

table of contents

August 1996,
Volume 47, Issue 4

Articles

Implementing the Capability Maturity Model
for Software Development
by Douglas E. Lowe and Guy M. Cox

Software Failure Analysis for High-Return
Process Improvement Decisions
by Robert B. Grady

Evolutionary Fusion: A Customer-Oriented
Incremental Life Cycle for Fusion
by Todd Cotton

The Evolutionary Development Model for
Software
by Elaine L. May and Barbara A. Zimmer

HP Domain Analysis: Producing Useful Models
for Reusable Software
by Patricia Collins Cornwell

A Model for Platform Development
by Emil Jandourek

A Decision Support System for Integrated
Circuit Package Selection
by Craig J. Tanner

Cycle Time Improvement for Fuji IP2 Pick-and-
Place Machines
by Fereydoon Safai

javascript:if(confirm('http://welcome.hp.com/country/us/eng/welcome.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/welcome.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/prodserv.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/prodserv.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/support.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/support.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/solutions.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/solutions.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/howtobuy.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/howtobuy.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/welcome.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/welcome.htm'
javascript:if(confirm('http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm'
javascript:if(confirm('http://www.hp.com/go/search-us-eng/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hp.com/go/search-us-eng/'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/contact.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/contact.htm'
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/covaug96.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/ahead-0896.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/past.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/journal.html
javascript:if(confirm('http://www.hpl.hp.com/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/'
javascript:if(confirm('http://www.hpl.hp.com/about/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/about/'
javascript:if(confirm('http://www.hpl.hp.com/research/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/research/'
javascript:if(confirm('http://www.hpl.hp.com/news/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/news/'
javascript:if(confirm('http://www.hpl.hp.com/jobs/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/jobs/'
javascript:if(confirm('http://www.hpl.hp.com/techreports/ \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/techreports/'
javascript:if(confirm('http://www.hpl.hp.com/about/sites.html \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/about/sites.html'
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a1.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a2.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a3.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a4.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a5.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a6.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a7.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a8.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a9.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a10.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a11.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a1.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a2.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a3.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a4.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a5.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a6.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a7.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a8.htm

Reducing Setup Time for Printed Circuit
Assembly
by Richard C. Palm, Jr.

Low-Temperature Solders
by Zequn Mei, Helen A. Holder, and Hubert A.
Vander Plas

Assessment of Low-Temperature Fluxes
by Hubert A. Vander Plas, Russell B. Cinque, Zequn
Mei, and Helen A. Holder

file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a9.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a10.htm
file:///C|/doc/HP/hpl/www.hpl.hp.com/hpjournal/96aug/aug96a11.htm
javascript:if(confirm('http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://www.hpl.hp.com/cgi-bin/printerfriendly.cgi?in=SNF2/1_col_layout_template.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/privacy.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/privacy.htm'
javascript:if(confirm('http://welcome.hp.com/country/us/eng/termsofuse.htm \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address. \n\nDo you want to open it from the server?'))window.location='http://welcome.hp.com/country/us/eng/termsofuse.htm'

Article 1 August 1996 Hewlett-Packard Journal 1

Implementing the Capability Maturity

Model for Software Development

Continuous support for a software development improvement effort
requires at least two things: a clearly defined improvement model
and success at applying the model in the organization. One HP
division was able to apply one such model and achieve
measurable success on several product releases.

by Douglas E. Lowe and Guy M. Cox

Manufacturing entities are always looking for more efficient ways of producing products because they realize that an efficient
process yields lower costs, better quality, and increased customer satisfaction. Software manufacturers are no different from
their hardware counterparts in that they want to use the best software development process available. The Capability
Maturity Model (CMM) for software, developed at the Software Engineering Institute (SEI) at Carnegie-Mellon University,*
is a process model that provides excellent guidance to improve software development processes.

The Model
CMM is used to evaluate and improve the way software is built and maintained. First released in 1987, CMM was originally
based on the experience of members of SEI. CMM has been continuously improved and refined since 1987 through
successive revisions based on industrywide and worldwide input. Yet, even though it is based on experience, it is only a
model, which is an abstract, general framework describing the processes used to develop and maintain software. Like any
model, it requires interpretation to be used in a specific context. The approach used by CMM is to describe the principles
and leave their implementation up to the managers and technical staff of each organization, who will tailor CMM according to
the culture and the experiences of their own environment.

Perhaps the most well-known aspect of the CMM is its description of five stages, or maturity levels, of an organization’s
software process (see Fig. 1). The first level of the software development process, referred to simply as the initial level, is
described as ad hoc, poorly controlled, and often with unpredictable results in terms of schedule, effort, and quality. At level
2, the repeatable level, the outputs of the process are consistent (in terms of schedule, effort, and quality) and basic controls
are in place, but the processes that produce those results are not defined or understood.

Level 3, the defined level, is the point at which the software engineering practices that lead to consistent output are known
and understood and are used across the whole organization. The managed level, or level 4, is where the defined elements
from level 3 are quantitatively instrumented so that level 5, the optimizing level, can be achieved. Level 5 exists in
organizations in which the development process operates smoothly as a matter of routine and continuous process
improvement is conducted on the defined and quantified processes established in the previous levels.

Thus, CMM is seen as a maturity or growth model in which an organization works its way up the five levels and, even after
having attained level 5, is still in the process of continually improving and maturing.

Each of the five levels is also defined by the key processes associated with it. There are 18 key process areas that make up
the five levels (see Fig. 1). These processes were chosen because of their effectiveness in improving an organization’s
software process capability. They are considered to be requirements for achieving a maturity level.

Managerial processes are those that primarily affect the way management operates to make decisions and control the
project. Technical processes are those that primarily affect the way engineers operate to perform the technical and
engineering work.

CMM provides a structure for each of the key process areas (see Fig. 2). Also, each key process area has one or more goals
that are considered important for enhancing process capability. Fig. 3 shows the goals for three of the key process areas in
level 2.

Finally, each key area has five common features or attributes:

� Commitment to perform describes the actions needed to ensure that the process is established and will endure
and typically involves policies and senior management sponsorship.

� Ability to perform describes the preconditions that must exist in the project or organization to implement the soft-
ware process competently. Ability to perform typically involves resources, organizational structures, and training.

* SEI is sponsored by the U.S. Department of Defense and was established in 1984 by the U.S. Congress as a federally funded research organization. Its
mission is to provide leadership in advancing the state of the practice of software engineering to improve the quality of systems that depend on software.

Article 1 August 1996 Hewlett-Packard Journal 2

Level 3

Level 2

Level 1

Level 5

Level 4

Initial (Ad Hoc, Chaotic)

Repeatable (Disciplined Process)

� Software Configuration Management
� Software Quality Assurance
� Software Subcontract Management
� Software Project Tracking and Oversight
� Software Project Planning
� Requirements Management

Defined (Standard, Consistent Process)

� Peer Reviews
� Software Product Engineering
� Intergroup Coordination
� Integrated Software Management
� Training Program
� Organization Process Definition
� Organization Process Focus

Managed (Predictable Process)

� Software Quality Management
� Quantitative Process Management

Optimizing (Continually Improving Process)

� Process Change Management
� Technology Change Management
� Defect Prevention

� Managerial Processes
� Technical Processes

Fig. 1. The five levels of the Capability Maturity Model (CMM). The items listed at each level are called key process

areas. These areas determine an organization’s software development maturity.

� Activities performed describes the roles and procedures necessary to implement a key process area. These typi-
cally involve establishing plans and procedures, performing the work, tracking it, and taking corrective actions as
necessary.

� Measurement and analysis describes the need to measure the process and analyze the measurements.

� Verifying implementation describes the steps needed to ensure that the activities are performed in compliance
with the process that has been established. Verification typically encompasses reviews and audits by management
and software quality assurance.

The intent of CMM is to describe what needs to be done to develop and maintain software reliably and well, not how to do
it. CMM further describes practices that contribute to satisfying the intent of these attributes for each key process area. Any
organization can use alternative practices to accomplish the CMM goals.

The Challenge
It usually takes most organizations about two to three years to go from level-1 to level-2 CMM compliance. However, based
on very sound business reasons, our general manager at HP’s Software Engineering Systems Division (SESD) committed us
to reaching level 3 in 36 months. To show a commitment to this aggressively scheduled task, three people were assigned to
the project.

During the planning stage, we discovered that because this was such a reasonable program, we could complete level 2 in
less than 12 months with less than three full-time people. Perhaps more important, we found that this program could
provide immediate benefits.

Article 1 August 1996 Hewlett-Packard Journal 3

Process Capability:

Disciplined process

Goal 1:

Software estimates are
documented for use in

planning and tracking the
software project.

Implementation or
Institutionalization

Infrastructure
or Activities

Key Practice:

Activity 9. Estimates for the
size of the software work
products (or changes to the
size of software work prod-
ucts) are derived according
to a documented procedure.

Maturity Level:

Level 2 (Repeatable)

Key Process Area:

Software Project Planning

Common Feature:

Activities Performed

Indicates

Contains

Achieves

Addresses

Describes

Organized by

Contains

Fig. 2. The elements that make up the structure of the level-2 key process area: Software Project Planning. Each key

process area has a similar set of elements.

Level 2: Repeatable. Basic project management processes are established to
track cost, schedule, and functionality. The necessary process discipline is in
place to repeat earlier successes on projects with similar applications.

Requirements Management

1. Requirements are controlled to establish a baseline for engineering
and management use.

2. Plans, products, and activities are kept consistent with the requirements.

Software Project Planning

1. Estimates are documented for use in planning and tracking.

2. Project activities and commitments are planned and documented.

3. Affected groups and individuals agree to their commitments related
to the project.

Software Project Tracking

1. Actual results and performances are tracked against the software plans.

2. Corrective actions are taken and managed to closure when actual
results and performance deviate significantly from the plans.

3. Changes to software commitments are agreed to by the affected groups
and individuals.

Fig. 3. The list of goals for three of the key process areas for level-2 CMM compliance.

In this article we describe how our product teams reached level-2 CMM compliance within a few months of starting the
project, beginning with investigating the project in September and continuing with implementation in November 1994.
By May of 1995 we had completed two deployment cycles with the product teams, and our internal audits of the teams’
processes verified that we were operating at level-2 CMM. After several more audits of all the product teams, we found that
the organization was operating at 100% level-2 CCM by August 1995. By May 1996 SESD had taken major steps toward
achieving level 3 and is on track to achieve level 3 in 36 months. We expect that our description of how we accomplished
this will provide insight for other organizations trying to achieve similar improvement in their software development
processes.

The Improvement Project
HP’s Software Engineering Systems Division (SESD) produces UNIX software development tools, including SoftBench, C,
C++, COBOL, UIM/X, HP Distributed Smalltalk,1 and configuration management tools. At SESD, software engineers work

Article 1 August 1996 Hewlett-Packard Journal 4

together in cross-functional teams of 10 to 15 engineers. The cross-functional teams are made up of representatives from
R&D, marketing, and learning products. These teams report to two business teams, one for the technical market and one for
the commercial market. A combined quality and productivity function completes the organizational picture.

For several years SESD has attempted to change and improve its software engineering process. However, like most
organizations the development priorities were to get products out first and work on improvement if time permitted. Usually,
there was very little time to work on improvement. The development priority for SESD is still to get the product out (as it
should be), but the software engineering process is seen as an integral part of achieving that priority.

When we began this project SESD had in place and in use a standard software life cycle, excellent software development
tools, and good practices relative to configuration management, defect management, inspections, coding, and testing. SESD
also had an excellent customer satisfaction program in progress, and a basic metrics collection program in place.

However, there were still weaknesses in our engineering process. It took a long time to define products and our design
process needed some improvement. The life cycle was defined, but there was a lack of procedures for performing work and
a lack of engineering discipline for following defined processes. As a result, products were consistently taking longer than
expected, product completion dates were missed, and many features appeared in a product that weren’t originally planned.

There was expert help available from HP Corporate Engineering’s software initiative program. HP’s software initiative
program has built expertise in software process areas that are critical to software improvement, and we were able to enlist
the help of this organization in the early stages of our project.

HP’s software initiative group is a team of engineering and management experts who deliver knowledge and expertise
through consulting in software engineering practices. The software initiative team works with multiple levels of the
organization to optimize the organization’s investment in development capability, accelerating the rate of making lasting
strategic improvements and reducing the risk of change.

Beginning with the End in Mind
As mentioned above, we knew that it would be difficult to achieve level-3 CMM compliance in 36 months based on the
experiences of other organizations inside and outside HP. Our problem was one of finding a way to institute process
changes in an orderly way without adding major risks to the product teams’ execution of their projects.

Adding to the sense of urgency were the very real business goals that needed to be achieved for SESD to be fully successful.
The critical business issues were product time to market and quality improvement. These issues were evident in the past
performance of the product teams in delivering products within an 18-to-24-month window and in the difficulty of delivering
products that addressed major customer satisfaction issues. Responding to these critical business issues provided the real
endpoint and goal that the entire organization could work to achieve.

The SoftBench2 product team,which was the first group within our division to begin applying CMM level 2, had a business
goal of releasing an update in a 12-month cycle, which would mean a 6-to-12-month reduction in typical cycle time. The
team also had additional goals of reducing the number of lines of code in the product, delivering three major customer
satisfaction enhancements and three competitive enhancements, and fixing all major customer reported problems.

We designed the software improvement project to help support the goals of the SoftBench product. The life cycle and the
processes were defined to map into the objectives of a 12-month release cycle, provide methods for requirements analysis
and specification in a short period, and provide aggressive management of defects during the development process.

Investigation: Training and Planning

To evaluate our current practices we used a technique called a software process profile, which was developed by HP in
collaboration with the Software Engineering Institute at Carnegie-Mellon University. The process profile is an assessment of
the state of an organization’s software development process, identifying strengths and weaknesses, highlighting the process
improvements the organization values most, and recommending areas for change. The profile uses CMM as the standard for
evaluating the software process. Using questionnaires and open-ended interviews, it provides results for all eighteen of the
key process areas shown in Fig 1.

To complete the profile, engineers and managers in an organization must fill in a questionnaire that is designed to evaluate
that organization’s software process maturity against the CMM requirements. The results of this questionnaire are compiled
into a software process profile for the organization. Fig. 4 shows SESD’s software process profile.

We selected a representative group of 30 engineers and managers to participate in the assessment and, over a period of two
days, we provided a short overview training session on CMM and a two-hour period for small groups to answer the
assessment questions.

Article 1 August 1996 Hewlett-Packard Journal 5

Peer Reviews

Software Product Engineering

Intergroup Coordination

Integrated Software Management

Training Program

Organization Process Definition

Organization Process Focus

Not
Satisfied

Partially
Satisfied

Fully
Satisfied

Configuration Management

Quality Assurance

Subcontract Management

Project Tracking

Project Planning

Requirements Management

Not
Satisfied

Partially
Satisfied

Fully
Satisfied

Level 3: Defined

Level 2: Repeatable

Fig. 4. A software process profile indicating the compliance of SESD to the requirements of levels 2 and 3 of CMM at

the time the software improvement project began.

An example of a typical question from the project tracking and oversight area asks the participant:

“Does someone review the actual project results regularly with your section and lab managers?”

1–Almost Always 2–Often 3–Seldom 4–Almost Never 5–Doesn’t Apply 6–Don’t Know

For SESD, the process profile results (Fig. 4) indicated that four level-2 process areas were partially satisfied and two areas,
requirements management and subcontract management, were areas that were not satisfied at all. Out of the seven level-3
processes, SESD partially satisfied only one area—peer reviews. These results meant that our organization would need to
focus on implementing improved practices for all of the level-2 key process areas.

After the results were processed, we held several review sessions with engineers and managers to explain what the results
meant. In one of the early sessions we asked the attendees to help us identify the benefits of improving our performance in
each area and the roadblocks to achieving the requirements in each area. For example, Table I shows the assessment results
from the software project tracking and oversight key process area.

We found that the assessment process was an important element for describing the improvements needed and determining
how we should go about making the improvements. It quickly focused the entire organization on an improvement goal for our
software processes and provided the starting point for getting participation in planning what actions we needed to take.

Applying the CMM Model Effectively
One of the critical steps in getting started was to understand CMM in detail. Over a period of several weeks three process
consultants met daily to review the CMM specifications, develop our interpretation of the model, and translate it into
language that could be applied within our organization.* This was an important step because CMM contains many practices
that are better suited to large organizations and it was necessary to interpret which of these practices would apply to our
organization. Also, during these meetings ideas of how best to deploy these practices were developed.

The process consultants examined each of the key process areas and decided what would be required to define our
processes in a way that satisfied the requirements for level-2 CMM compliance. Several discoveries were made in the course
of this work:

� SESD already had many process assets that could be leveraged to support the key process area requirements.
These assets were our software life cycle, our formal documentation for patches, releases, and defect manage-
ment procedures, and several informal methods of documentation for specifications, design, and testing.

Article 1 August 1996 Hewlett-Packard Journal 6

� We discovered the need for a process architecture when we attempted to describe what deliverables would be
needed to support the definition of our processes. A process architecture is analogous to other types of engineer-
ing architectures (e. g., buildings, software, hardware, etc.). It describes the layout of components needed to build
a system for a specific purpose. Fig. 5 shows the process architecture elements we used to create parts or all of
the documentation needed to provide SESD specifications for creating work products and performing software
development activities.

� Level-2 CMM permits each project team to document the procedures that will be used in developing products. By
writing a general procedure to cover the way product development is generally performed and then customizing
the procedure for each project team, if necessary, we realized that we could save several months of effort and
speed up the eventual move to level-3 CMM, where organizational processes must be standardized.

Table I
Assessment Results for Software Project

Tracking and Oversight

Percent of Survey
Respondents

Survey Questions Fully Partial Not

Are the project’s planned activities and deliverables tracked (e.g., schedule,
effort, and tests)?

43 24 33

Are the actual results compared to your estimates throughout the project? 10 19 71

If there is a variance, does someone take corrective action or explain why the
variance has occurred?

14 38 48

Are changes to the activities, deliverables, and schedule discussed with the
people who will be affected?

19 58 23

Does someone review the project results regularly with your section and lab
managers?

18 18 64

Formal Project Planning and Decisions
To give this improvement project the greatest chance of success and reduce the overall risk for the project, we developed a
formal project plan covering every phase of the definitional work and the timing for deployment of the processes. This plan
was reviewed and approved by the division staff before beginning the implementation.

Several key decisions needed to be made about how the project deliverables would be designed, reviewed, approved, and
deployed into the product development team’s operations.

Several models for process creation, approval, and deployment were examined and discussed before it was decided to use a
define-deploy approach that mapped into each development project’s life cycle.** This allowed the improvement project
team to stage the work by life cycle phase (i.e., requirements, design, implementation, and test). This model also provided a
structure within which process deliverables could be refined and improved.

Measuring Progress
Methods for measuring the progress of the project needed to be established. The only way to do this was through auditing
the product development teams after each major checkpoint. Thus, we decided that a thorough audit of how the product
development teams conducted work should be done after checkpoints when the pressure to complete the checkpoint had
subsided and the team would be more open to listening to the audit findings. These findings were reviewed with the
management team and any major issues were addressed by assigning owners and developing action plans. The results of the
audits were summarized and published within the division to let everyone understand the accomplishments of the program.

Measurement of progress in each key process area was performed by interviewing project team members and using a
checklist of requirements for that phase of the project. This checklist was based on the practices needed to satisfy the goals
for each of the key process areas that apply to level-2 CMM.

* The process consultants were originally members of the SESD software quality assurance group. They had extensive experience in software engineer-
ing practices management and software consulting.

** A define-deploy approach means that the processes are defined in the project team just before application. This allows processes needed for the re-
quirements phase to be defined and deployed as the requirements phase of the project is executed.

Article 1 August 1996 Hewlett-Packard Journal 7

Policy

Procedure

Checklist

Template

Training

Work Product

• Specifies what will happen
• Sets the cultural expectations
• “That’s how we do things around here”

• Specifies how it will happen
• A set of steps for doing something
• May specify who does what when

• Specifies what or how in abbreviated format
• A short form of procedures for easy reference or

verification of actions

• Specifies the content or quality of what will happen
• Provides guidance for creating necessary work products

• Provides organized information on processes that
individuals need to perform their jobs

• Covers policies, procedures, checklists, templates, or
instructions

• May be formal classroom or informal orientation

• Specifies a plan or results
• Created as an output of applying a defined process
• May need to be “managed and controlled”

Element Type Purpose

Fig. 5. The process architectural elements and their purpose.

From previous experience, we realized that communication would play an increasingly important role for the project’s
success as new procedures and supporting documentation were developed. We decided that all of the documentation would
be integrated into the software life cycle so that there would be just one place to find the information. Secondly, this
documentation would all be online and the Mosaic browser coupled with our configuration management tool would be used
to store and control the documents and provide an easily navigable interface for users.

Implementation: Managing the Change

Getting an organization to adopt the changes necessary for level-2 CMM compliance was an important step in implementing
our new processes. Defining the new policies and procedures and then providing training in these new policies and
procedures was necessary but not sufficient. Changing the processes involved changing the culture, and this is where it was
critical to get everyone thinking about the changes in a positive way. We approached this aspect of change management by
deciding we would try to accomplish the following goals:

� Demonstrate success with a phased approach

� Leverage existing processes and minimize some areas of change

� Make the contributions of everyone very visible.

Demonstrate Success with a Phased Approach
The software improvement project needed to show results as early as possible to capture the attention of the organization
and to keep things focused on process improvement. To accomplish the objective of showing results early, the deployment
stages of the improvement project were designed to be about three months each.* This tactic provided visible results and
feedback to the organization by coinciding with the life cycle phases of the SoftBench product.

The implementation stage of the improvement project consisted of a series of short steps for defining, reviewing, and
approving the policies, procedures, and templates before deploying them to the product development teams.
Communicating what was expected, describing changes from the way we used to do things, and providing group or
individual training in new methods were very important steps in the way we deployed the process changes. We knew that
the project teams needed to understand the rules early so that the project could proceed smoothly.

An Example: The Requirements Phase
During the requirements phase of the product life cycle, the key process areas we worked on were practices for
requirements management and project planning. By using readily available customer survey data, structured processes,
management review milestones, and training, we were able to reduce the time for the requirements phase from what was
historically a six-to-eight-month process to three months. For the SoftBench teams, it was important to gain a deeper
understanding quickly of the new features demanded by our customers and to translate this information into work steps
that would be needed in the design phase.

* Deployment was a term we used to mean communication, training, and consulting with the product development team, followed by application of the
procedures or templates by the engineers and managers. Templates consisted of the structured outlines for the work products, such as design specifica-
tions, test plans, data sheets, and so on.

Article 1 August 1996 Hewlett-Packard Journal 8

One of the problems the teams faced was reducing the list of possible things to accomplish to a few high-impact
requirements that could be accomplished within the schedule. Thus, to collect requirements information, survey
questionnaires based on a user-centered design methodology were created to facilitate rapid feedback from customers using
telephone surveys. The process consultants designed standard templates for the engineers to describe the customer
requirements and the Mosaic browser was used to post work in progress, allowing managers to review the work. Fig. 6
shows a portion of one of these templates.

SoftBench 5.0 Written Survey

Environment:

1. What computer systems do you use for software development?

Make/Model/Memory

2. What types of operating systems do you use for software development
and deployment?

Operating Software Development Software Deployment
System

HP-UX
SunOS
Sun Solaris
PC Windows
Other:

3. What tools do you and others in your team use for software
development? Where appropriate, please include a vendor name.

Requirements gathering
Analysis
Design

Implementation
Understanding code
Editing
Compiling
Debugging
Testing

Configuration management
Project management
Release
Other key tools

4. What languages are used in your work group, in relative proportions?
Please make answers in a column total 100%.

Language Today In 12 Months In 24 Months

C % % %
C++ % % %
COBOL % % %
Fortran % % %
Other % % %

% % %

5. Do you do have a mixed-language development? [] Yes [] No

If so, in what languages?

Your Tasks:

6. What type of software do you develop?

7. Do you develop programs, libraries, or both?

8. What are the major tasks you perform with regard to software
development?

9. What tasks have you recently completed?

10. What tasks are you currently working on?

11. If you use SoftBench, what tasks do you use it for?

Edit Static Analysis
Compile/Build Code Generation
Debug Configuration Management
Performance Analysis Mail
Comparing/Merging Files Tool Integration

Other

12. About how many lines of code are in each of the programs or libraries
you develop? Indicate the number of programs and libraries that you
have in each of the following categories.

Size Programs Libraries

<10K
11-50K

 51-100K
101-300K
>300K

.

.

.

Fig. 6. A portion of a template containing a survey that the SoftBench product team used to solicit customer

requirements.

One criterion for determining what new features to include was an estimation of the resources and effort needed to design
the new features. A standard procedure was provided for the engineers to do this (Fig. 7). These estimates were then
available when the managers needed them for decision making and for the engineers to do more detailed planning of the
design phase activities.

The decision making process was essential for narrowing the scope of the project and finalizing the work commitments for
the next phase of the product development.

An Example: The Design Phase
During the design phase of the product life cycle, the key process areas were the practices in project tracking (i.e.,
managing and controlling work products, especially changes in requirements), and in project planning for the next phase.
The success in applying the software life cycle and CMM level-2 processes to this phase of the work was evident from two
major accomplishments. The first was that the team completed every aspect of the design work, including reviews and
inspections, in three months. In the past, design specifications and design reviews were cut short because of schedule
pressures. The team was also able to make decisions early in the project about eliminating features that would be too costly

Article 1 August 1996 Hewlett-Packard Journal 9

Tool/Component
External Specifications Internal Specifications Size Estimates

High Level High Level Low LevelPrototype Final Current Estimated

A <n KNCSS>

n KNCSS = Number of KNCSS (Thousand Lines of Noncomment Source Statements)

B

mm/dd/yy

mm/dd/yy

mm/dd/yy

mm/dd/yy mm/dd/yy

mm/dd/yy mm/dd/yy mm/dd/yy

mm/dd/yy mm/dd/yy

<n KNCSS>

<n KNCSS><n KNCSS>

Fig. 7. A template for engineers to estimate the documentation delivery dates and code size of new software

components.

to implement. For example, unit testing capability was a feature considered for the product, but it was eliminated during the
requirements phase because of staffing trade-offs. This action substantially reduced the risk of schedule slippage later on.

Leverage Excellence to Minimize Change
As mentioned earlier, during the assessment and planning of the improvement project, we recognized that many practices
used by SESD were already at level-2 CMM compliance. Therefore, it was important to leverage as many of the current
practices and procedures to minimize the effort required and reduce the amount of change being introduced. We already had
a standard software life cycle defined and in use, an excellent software development toolset, and good practices and tools in
configuration management, defect management, inspections, coding, and testing. Part of our standard operations included a
customer satisfaction survey and software metrics. These were all areas that were acknowledged as excellent and that
should be maintained and supported.

The development environment consisted of a suite of tools integrated with SoftBench. UIM/X (user interface Motif) was
used as a rapid prototyping tool. SoftBench provided the framework for editing, compiling, and debugging the code.
Capabilities in SoftBench were also being used to assist in program understanding through call graphs and documentation
of object-oriented designs for the new features. Integrated into SoftBench was a configuration management tool (SoftCM)
for managing source code, and the ability to access our defect tracking tool DDTs from QualTrack. Having these tools
already in place and used by the engineers was a major factor in maintaining developer productivity while making process
changes in other areas.

Inspections and software metrics were already a well-established part of our culture. Although both of these areas are
elements of level-3 CMM and we were working on level 2, we used them anyway because we did not want to lose the
benefits we were achieving with these practices. Because inspections and metrics (defect tracking, schedule slippage, and
effort reporting) were institutionalized in our engineering and project management practices, we recognized that this would
be a distinct advantage for us when we went to level-3 CMM.

There were other opportunities to minimize change. These were in the areas of software configuration management,
software quality assurance, and subcontract management. The first two areas needed only minor changes to be level-2
compliant. Our practices in these areas were robust enough but needed to be documented, with better definitions of roles
and responsibilities. SESD wasn’t doing any software subcontracting, so it was decided to leverage a best practice from
within HP to document a starting point for future use.

Make Contributions Visible
Managing change requires good communication of the change, acknowledgment of the progress made, and encouragement
toward the goal. After each product life cycle checkpoint, the software quality assurance team performed an audit by
interviewing the product team members using a checklist for level-2 requirements. The software quality assurance members
were actually the process consultants from SEI. They were able to bring experience and maturity to the audit interviewing,
reporting, and follow-up consulting. Fig. 8 shows portions of the checklist for the requirements phase.

These audits had several major benefits. First, the project team knew ahead of time that a process they used during a phase
would be objectively evaluated by an independent team. This had the effect of elevating the importance of using a defined
process. Second, the audit interviews uncovered critical issues and risks for the product’s development that were almost
always a result of deviating from the project’s plan or processes.

For example, during the audit we identified a problem with inadequate staffing for test planning activities. The project plan
called for the completion of test plans before design was finished. The audit found incomplete test plans for the context
feature changes before the design complete checkpoint. This introduced additional schedule risk because the schedule and
staffing were not accurately estimated. It turned out that this part of the project was actually critical path during the
implementation and testing phase.

These issues and risks were reviewed by the management team and decisions were made to take corrective actions. This
had the effect of identifying tangible contributions of the level-2 model.

Article 1 August 1996 Hewlett-Packard Journal 10

Checklist: SQA Project Audit Plan for Requirements Phase

Template

Requirements Management Checklist

Responsibilities were assigned for developing and analyzing requirements.
Staffing was sufficient for developing and analyzing requirements.
Adequate training and tools were provided for developing and analyzing requirements.
Requirements are documented in the project data sheet.
Requirements were reviewed by affected individuals and groups.
Issues related to requirements were reported and tracked.
The project data sheet was reviewed and approved according to a documented procedure.

Project Planning Checklist

Responsibilities were assigned for the planning requirements phase activities.
Staffing was sufficient for planning activities.
Adequate training and tools were provided for planning activities.
Requirement phase activities were documented in a requirements phase plan.
Estimates of schedule were prepared and included in the requirements phase schedule.
A software life cycle was identified or documented in the requirements plan and the design phase plan.
Work products for control of the project during the requirements phase were identified in the project planning documents.
Commitments were negotiated with the business team managers and other affected groups.
External commitments were reviewed and approved by the business team managers.
Responsibilities were assigned for developing and maintaining the design phase plan.
Adequate training and tools were provided for planning the design phase.
A design phase plan was prepared according to a documented procedure.
Design phase activities are documented in the design phase plan.
Estimates of size, effort, and cost for design phase planning were prepared according to a documented procedure.
Risks were identified in the design plan and contingency plans were developed.
Requirements are traceable in the design plan.
Issues related to design are reported and tracked.
Design phase plans were updated to reflect changes in requirements.

Fig. 8. Portions of the audit checklist for the requirement phase. These checklists were used to assess the SESD life cycle

against the level-2 CMM requirements.

Key Results and Benefits
The improvement project to achieve level-2 CMM has had several direct results. First, the cycle time for the SoftBench
release was reduced from 18 to 24 months to 14 months. This resulted in a significant reduction in engineering time, and
consequently, a saving in the cost of developing the product. While the 12-month release cycle required a little longer than
planned, the commitment date at the time of design completion was met with no schedule slip and no reduction in product
reliability standards. Across all of SESD’s products there was a reduction from an average of 4.6 open serious defects at
manufacturing release in 1994 to 1.6 open serious defects per product in 1995. In fact, the product team fixed all outstanding
major customer service requests during this period. In addition, the product team reduced the overall code size by 12%,
reduced documentation size by 35%, and delivered three major customer satisfaction improvements and three major
competitive improvements. All of these are, of course, significant business results coming from the level-2 CMM process. On
SoftBench alone there was a cost reduction of two million dollars per year, or a return on investment of approximately
9 to 1.

Other results of the improvement effort are that all of the product releases in 1995, which also met level-2 CMM compliance,
were completed in under 12 months with no schedule slip. Fig. 9 shows the cycle times for similar projects over the past five years.
The average cycle time for the 1995 projects was 9.8 months, which is a 46% reduction in cycle time from the running average of 18
months for previous years. The schedule estimation error (from design completion to project completion) was reduced to zero
during 1995, compared with much higher errors in previous years.

Improved Execution. In past projects, the investigation phase usually lasted from 6 to 12 months, mainly because of the
unstructured, exploratory nature of the process used. By adopting a formal structure (i.e., tasks and schedules), the
investigation phase was reduced to four months.

Given the 12-month release cycle, it was critical to meet the intermediate phase deadlines to keep the project on track. In
past projects, these milestone deadlines were consistently delayed by months. As a result of the careful planning and tracking
processes used, the SoftBench team was able to meet the checkpoint deadlines within a very narrow margin of error (i.e., a
few weeks).

Customer Orientation. Historically, our product requirements process had been focused on prototyping features and
functionality that engineers identified through an infusion of “next bench” ideas. Product marketing would test these ideas
with customers and use this feedback to select the best set of features to include in the next release. Everyone recognized
the limitations of this approach in getting fresh ideas and direction for a product. Process improvement efforts were
underway to define a user-centered design process that would really focus on what customers had asked for. The major
change that occurred as a result of adopting the level-2 CMM practices is that we forced ourselves to adopt a new paradigm
in the way we acquired and evaluated customer input.

Article 1 August 1996 Hewlett-Packard Journal 11

Calendar
Months

25

1995

20

15

10

5

0

Average Cycle Time

Average Schedule Estimation Error

1990-91 1991-92 1994

19.67

16.00

22.00

9.80

4.00 4.50
1.00 0.00

Fig. 9. The average cycle times (design complete to project complete) for projects similar to SoftBench over the last

five years.

The Ability to Respond to Changes. In most of our earlier projects, when changes in requirements or personnel occurred, there
would be several weeks of confusion before revised plans or schedules could be started. In the new model of project
management and level-2 practices, when a change occurs the management team knows that replanning must start
immediately. Operating at level 2, the SoftBench team was able to estimate the impact of proposed changes and then
schedule the time for engineers to replan and estimate the new schedule. When this occurred, we did not have the usual
confusion about what to do. Instead, the team was able to respond with confidence and with very little lost time.

Conclusion
We believe that our circumstances and development environment are not unique. Many other organizations are trying
various quality improvement programs for software development and finding it very difficult to make the changes necessary
to be more rigorous and disciplined in their engineering practices. We also believe that we have discovered many of the
essential ingredients to make a software improvement program succeed in a very short period of time.

Our work at SESD has convinced us that the Capability Maturity Model from SEI provides an excellent framework for
defining software engineering process improvement for a small software organization. Achieving level-2 status has largely
been a matter of establishing a direction with leadership from top management and then instituting a credible program for
improving the practices used by software projects in planning and managing the work according to the CMM guidelines. We
believe that other organizations can achieve similar results in one year if leadership and execution of the software
improvement project are a priority for the management team.

References
1. E. Keremetsis and I. Fuller, “HP Distributed Smalltalk: A Tool for Distributed Applications,” Hewlett-Packard Journal, Vol. 46,

no. 2, April 1995, pp. 85-92.
2. Hewlett-Packard Journal, Vol. 41, no. 3, June 1990, pp. 36-68.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company Limited.

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited in the UK and other countries.

OSF/Motif is a trademark of the Open Software Foundation in the U.S. and other countries.

http://www.hp.com/hpj/aug96/augart2.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Article 2 August 1996 Hewlett-Packard Journal 1

Software Failure Analysis for

High-Return Process Improvement

Decisions

Software failure analysis and root-cause analysis have become
valuable tools in enabling organizations to determine the
weaknesses in their development processes and decide what
changes they need to make and where.

by Robert B. Grady

When I was growing up, my father was fond of using sayings to encourage me to remember important lessons. One of his
favorites was “Do you know the difference between a wise man and a fool?” He would then go on to say that a wise man
makes a mistake only once. A fool makes the same mistake over and over again.

Applying my father’s saying to software defects, it sometimes seems as if there are many “fools” among software developers.
However, there aren’t. Individually, they learn from their mistakes. What’s missing is organizational learning about our
software mistakes. I guess that many organizations have earned my dad’s “fool” label.

One useful way to evaluate software defects is to transfer process learning from individuals to organizations. It includes not
only analyzing software defects but also brainstorming the root causes of those defects and incorporating what we learn
into training and process changes so that the defects won’t occur again. There are five steps:

1. Extend defect data collection to include root-cause information. Start shifting from reactive responses to
defects toward proactive responses.

2. Do failure analysis on representative organization-wide defect data. Failure analysis is the evaluation of

defect patterns to learn process or product weaknesses.

3. Do root-cause analysis to help decide what changes must be made. Root-cause analysis is a group reasoning

process applied to defect information to develop organizational understanding of the causes of a particular

class of defects.

4. Apply what is learned to train people and to change development and maintenance processes.

5. Evolve failure analysis and root-cause analysis to an effective continuous process improvement process.

How do these steps differ from other popular methods for analyzing processes? One popular method is process
assessments, for example, SEI (Software Engineering Institute) process assessments.1 Most assessments document
peoples’ answers to subjective questions that are designed around somebody’s model of ideal software development
practices. If such models are accurate and if peoples’ answers reflect reality, the models provide a good picture of an
organization’s status. Thus, the results may or may not be timely, representative, or motivational.

The combination of failure analysis and root-cause analysis is potentially more valuable than subjective assessments,
because it quantifies defect costs for a specific organization. The key point to remember is that software defect data is your
most important available management information source for software process improvement decisions. Furthermore,
subsequent data will provide a measurable way of seeing results and evaluating how methods can be further adapted when
a specific set of changes is done.

Reactive Use of Defect Data (A Common Starting Point)
After initial analysis, everyone reacts to defects either by fixing them or by ignoring them. Customer dissatisfaction is
minimized when we react quickly to fix problems that affect a customer’s business. This is often done with fast response to
issues and by following up with patches or workarounds, when appropriate. Some Hewlett-Packard divisions track the
resolution of “hot sites.” Fig. 1 shows an example.2 Such a chart is a valuable way to track responsiveness, but it does little
to prevent future defects. Furthermore, hot sites and patch management are very expensive.

Cumulative defects for long-lived software products are also tracked. For example, Fig. 2 shows the incoming service
requests or discrepancy reports, the closed service requests or discrepancy reports, and the net progress for one NASA
software project.3 Some HP divisions also track progress like this,2 although HP’s progress measure subtracts incoming
defects from closed defects so that positive progress represents a net reduction in defects. NASA appears to do the reverse.

Article 2 August 1996 Hewlett-Packard Journal 2

Week

N
um

be
r o

f S
ite

s

Short Length

Medium Length

Long Length

Fig. 1. Tracking the number of hot sites during any particular week. For example, for the week indicated there were

M�N hot sites that had been hot for a long time and N hot sites that had been hot for a short time. 1992 Prentice-Hall

used with permission.

M

N

–60

–30

0

30

60

90

120

Progress

Service Requests or Discrepancy
Requests Closed

Incoming Service Requests
or Discrepancy Requests

Jan
92

Jul
91

Aug
91

Sep
91

Oct
91

Nov
91

Dec
91

Feb
92

Mar
92

Apr
92

May
92

Jun
92

Fig. 2. Incoming maintenance requests, closed maintenance requests, and net progress for one NASA project. This

figure is reprinted by permission of the publisher from “A Software Metric Set for Program Maintenance Management,”

by G. Stark, G.L. Kern, and C. Vowell, Journal of Systems and Software, Vol 24, p. 243. 1994 by Elsevier Science Inc.

N
um

be
r o

f R
eq

ue
st

s
(S

er
vi

ce
 R

eq
ue

st
 o

r D
is

cr
ep

an
cy

 R
eq

ue
st

)

Both the hot site graph and the defect closure progress graph show reactive uses of defect data. In the examples, the
respective organizations were using the data to try to improve their immediate customer situations. The alternative is to
ignore the data or to react much more slowly.

Ignoring defect data can lead to serious consequences for an organization’s business. For example, the division producing
one HP software system decided to release its product despite a continuing incoming defect trend during system test. The
result was a very costly update shortly after release, a continued steady need for defect repairs, and a product with a bad
quality reputation. This is the kind of mistake that can cause an entire product line’s downfall. A recent article described
how one company learned this lesson the hard way.4

Responses should not be limited only to reaction. Besides endangering customer satisfaction and increasing costs, here are
some other dangers that could occur if reactive processes aren’t complemented with proactive steps to eliminate defect
sources:

1. People can get in the habit of emphasizing reactive thinking. This, in turn, suggests that management finds
shipping defective products acceptable.

2. Managers get in the habit of primarily rewarding reactive behavior. This further reenforces fixing defects late
in development or after release. Late fixes are both costly and disruptive.

3. People place blame too easily in highly reactive environments because of accompanying pressure or stress.
This is demoralizing, since the root causes of most defects are poor training, documentation, or processes,
not individual incompetence.

Remember that effectively reacting to defects is an important part of successfully producing software products. However,
because business conditions change rapidly, many organizations can’t seem to find the time to break old habits of using
defect data reactively without considering ways of eliminating similar future problems. The elimination of the causes of
potential future defects must be included in any successful long-term business strategy.

Failure Analysis (Changing Your Mental Frame of Reference)
The proactive use of defect data to eliminate the root causes of software defects starts with a change in mental frame of
reference. The reactive frame generally focuses on single defects and asks “How much do they hurt?” It also considers how
important it is to fix particular defects compared with others and asks “When must they be fixed?” The proactive frame
asks, “What caused those defects in the first place? Which ones cause the greatest resource drain? How can we avoid them
next time?”

Article 2 August 1996 Hewlett-Packard Journal 3

Various reports have described successful efforts to analyze defects, their causes, and proposed solutions. But the
terminology among them has differed, and the definitions could mean different things to different people. In the fall of 1986,
the HP Software Metrics Council addressed the definition of standard categories of defect causes. Our goal was to provide
standard defect terminology that different HP projects and labs could use to report, analyze, and focus efforts to eliminate
defects and their root causes. Fig. 3 is the model that has evolved from our original definitions.2

Specifications/
Requirements

Hardware Interface

Software Interface

User Interface

Functional
Description

Other

Process (Interprocess)
Communications

Data Definition

Module Design

Logic Description

Error Checking

Standards

Other

Logic

Computation

Data Handling

Module Interface/
Implementation

Standards

Other

Requirements or
Specifications

Functionality

Other

Test Software

Test Hardware

Development Tools

Integration Software

Other

Origin
(Where?)

Design Code
Environmental

Support Documentation Other

Missing Unclear Wrong Changed Better Way

Type
(What?)

Mode
(Why?)

Fig. 3. Categorization of software defects. 1992 Prentice-Hall used with permission.

The model is used by selecting one descriptor each from origin, type, and mode for each defect report as it is resolved. For
example, a defect might be a design defect in which part of the user interface described in the internal specification was
missing. Another defect might be a coding defect in which some logic was wrong.

Fig. 4 gives some idea of how defects vary from one entity to another.5 The different shadings reflect the origin part of
Fig. 3. The pie wedges come from the middle layer of Fig. 3, the defect types. The eight largest sources of defects for
different HP divisions are shown in each pie. All four results profile defects found only during system and integration tests.

We can immediately see from Fig. 4 that the sources of defects vary greatly across the organizations. No two pie charts are
alike. These differences are not surprising. If everyone developed the same way and experienced the same problems, then we
would have fixed those problems by now. Instead, there are many different environments. While many proposed solutions to
our problems apply to different situations, they don’t necessarily apply equally well to all problems or all environments.

Some of the differences are because of inconsistencies in peoples’ use of the origin and type definitions. Because the
definitions are just a means to focus process improvement efforts on the costliest rework areas, groups resolve
inconsistencies when they define root causes to problems and brainstorm potential fixes. It is the triggering of these
discussions that makes the data in Fig. 4 so important. Discussing root causes is a way to instill a process improvement
attitude in an organization. Defect data will provide a measurable basis for decisions that must be made. By continuing to
track defect data, an organization can also measure how successful its solutions are.

Acting on Causal Data
Collecting defect source data is only the first step. Persuasive as the data might be, improvements won’t happen
automatically. Both managers and engineers must agree on what the data means and the importance of acting on it. One of
the best ways to help ensure that this happens is to tie proposed improvements to stated business goals. This also keeps
improvement priorities high enough to help ensure sustained management support.

Besides management support, some first-line managers and engineers affected by a proposed change must be motivated to
do something and be assigned responsibility to plan and do the necessary changes. Finally, as for any effective project, there
must be a way of monitoring progress and gauging success.

Article 2 August 1996 Hewlett-Packard Journal 4

Data Handling 6%

Documentation 19.2%

Requirements 4.8%

Hardware Interface 3.6%

Process/Interprocess 5.4%

Logic Description 4.0%

Data Handling 16.0%

Requirements 18.0%

Other Code 8.0%

Computation 15.0%

User Interface 10.0%

Requirements 7.5%

Functionality 5.0%

Functional Description 11.3%

Logic 6.4%
Data Handling 4.5%

Module
Interface 4.2%

Requirements 22.0%

Other Code 10.8%

Computation 18.0%

Logic 32.2%

Module Design 17.0%

Data Definition
4.0%

Process/
Interprocess

10.0%

Software Interface 23.0%

Data Handling 20.0%

Logic 28.8%

Process/Interprocess 6.2%

Module Design 7.5%

User Interface 23.4%

Software
Interface 14.5%

Error Checking 13.7%

Specifications/
Requirements Design Code Documentation

Fig. 4. Sources of defects found during testing in four HP divisions.

As a group, software developers now have several decades of software development experience. It is time to break out of
our pressure-driven reactive habits and use our accumulated knowledge to drive lasting improvements. Failure analysis
changes the way managers and developers look at software defects. This finally opens the way to a proactive frame of
reference.

Root-Cause Analysis Processes
There are many possible ways to analyze root-cause data. Any successful way must be sensitive to project pressures and
personnel motivation. HP has used several approaches in different organizations. For this discussion, I will label three that
seem to evolve naturally from each other as one-shot root-cause analysis, post-project root-cause analysis, and continuous

process improvement cycle. These three approaches include many common steps. Since the first is an introductory process,
the most detailed explanation is saved for the post-project root-cause analysis.

One-Shot Root-Cause Analysis
A good starting approach for organizations that have not previously categorized their defect data by root causes is a
one-shot root-cause analysis. This approach minimizes the amount of organizational effort invested by using someone from
outside the organization to facilitate the process. At HP most divisions have defect tracking systems with complete enough
information to extract such data.

The one-shot process has six steps.

1. Introduce a group of engineers and managers to the failure-analysis model (Fig. 3) and the root-cause analysis
process. (About one hour.) Make it clear that the goals of the one-shot process are to:

� Create a rough picture of divisional defect patterns.

� Identify some potential improvement opportunities.

2. Select 50 to 75 defects from the defect tracking system using a random process. Make sure that the team
thinks the defects have enough information to enable them to extract the necessary causal information.
(About two hours sometime before the meeting.)

Article 2 August 1996 Hewlett-Packard Journal 5

3. Have the people in the group classify one defect per person and discuss the findings as a group. Then have
them classify enough defects so that you have about 50 total. Draw a pie chart of the top eight defect types.
(About two hours.)

4. Pick two defect types to focus on. Create fishbone diagrams from the combined root causes and additional
comments. A fishbone diagram is a brainstorming tool used to combine and organize group thoughts.2,6

(About half an hour.)

5. Develop some recommendations for improvements. (About half an hour)

6. Present the results and recommendations to management. Make assignments to do initial changes. (About one
hour)

Participants in this process have been generally surprised and excited that they could learn so much in a very short time.
They have also been uniformly interested in adopting the analysis process permanently. How quickly they have followed
through has varied, depending on many business variables such as immediate product commitments, other in-progress
changes, or a tight economic climate.

Post-Project Root-Cause Analysis
The major difference between this process and the one-shot process is that organizations that start with the one-shot
process have not previously collected causal data. Organizations that already collect failure-analysis data and have an
understanding of their past defect patterns analyze their data and act on their results more efficiently. The steps in this
approach follow the meeting outline shown in Fig. 5. Note that the times shown in Fig. 5 are intended to force the meeting
to keep moving. It is best to schedule a full two hours, since all that time will be needed. The example used here to illustrate
this process came from a root-cause analysis meeting done at an HP division shortly after a team at that division released a
new product.

Premeeting
• Identify the division’s primary business goal.
• Have the division champion and root-cause facilitator analyze data.
• Have the champion send out the meeting announcement and instructions to engineers.
� Pick two defects from their code that have been chosen from the

defect categories.
� Think of ways to prevent or find defects sooner.

Meeting
• State the meeting’s goal (use insights gained from failure analysis data to improve development and support practices).
• Perform issues selection (10 minutes).
• Review the defects brought to the meeting (15 minutes).
• Perform analysis (15 minutes).
• Take a break (10 minutes).
• Brainstorm solutions (10 minutes).
• Test for commitment (10 minutes).
• Plan for change (10 minutes).

Postmeeting
• Have the division champion and root-cause facilitator review meeting process.
• Have the division champion capture software development process baseline data.

Fig. 5. Root-cause analysis meeting outline.

Premeeting:
� Identify the organization’s primary business goal. This goal is an important input when prioritizing which high-

level defect causes should be addressed first. It also helps to frame management presentations to ensure sustained
management support. Typical business goals might be framed around maximizing a particular customer group’s
satisfaction, evolving a product line to some future state, or controlling costs or schedule to get new customers.

� The division champion and root-cause facilitator analyze the data. The champion is a person who promotes a pro-
cess or improvement activity, removes obstacles, enthusiastically supports implementers and users, and leads
through active involvement. The root-cause facilitator is a person who runs the root-cause analysis meeting. The
champion and the facilitator need to be skilled at meeting processes and dynamics and be familiar with software
development and common defect types. One simple data-analysis approach is to enter the data into an electronic
spreadsheet. Draw pie charts of the top eight defect types by quantity and by find and fix effort (either actual or
estimated). Fig. 6 shows the system-test data for four projects at one HP division. The shading represents defect
origin information, and the pie wedges are defect types. The left pie chart shows the eight most frequently re-
corded causes of defects. The right pie chart shows the data adjusted to reflect that design and specification de-
fects found during system test cost much more to fix than coding defects do. Since the HP division that provided
this data did not collect their defect-fix times, the weighting factors are based on six industry studies summarized
in reference 2. The right pie chart in Fig. 6 was prepared by multiplying the left pie chart wedge percentages (or
counts) by the appropriate weighting factor and then converting back to 100%.

Article 2 August 1996 Hewlett-Packard Journal 6

Specifications/
Requirements Design Code

Data Handling 10.5%Software
Interface 6%

Hardware
Interface 7.7%

Error
Checking

10.9%

User Interface 11.7%

Logic 20.8%

Standards 7.0%

Specifications 25.5%

Error Checking 10.0%

User Interface 10.7%

Specifications 52.9%

Hardware Interface 7.0%
Software Interface 5.5%

Logic 7.6%

Data Handling 3.8%

Standards 2.5%

Weighting Factors

Specifications
Design
Code
Documentation

14.5
6.25
2.5
1

Fig. 6. Top eight causes of defects for one division.

Weighted Data

� Select two defect types to brainstorm based on the best estimate of the organization’s concern or readiness to im-
plement solutions. The two defect types selected for this meeting were user-interface defects and specifications
defects. The specifications defect type was picked because it was the largest division category (64 out of 476 de-
fects were classified as specifications defect types for this project team). User-interface defects were picked be-
cause they were the largest category (110 defects) that the particular brainstorming team had experienced. Both
categories represented significant divisional improvement opportunities.

� Send out instructions to engineers. The organization champion should have each engineer bring hard-copy infor-
mation on two defects from their code, based on the chosen types. Tell invitees to think back to the most likely
root cause for each defect and to propose at least one way to prevent or find each defect sooner.

Meeting:
� State the meeting’s goal (use insights gained from failure-analysis data to improve the organization’s development

and maintenance practices). Present the defect categorization model, show typical patterns for other organiza-
tions, and show your organization’s pattern. Set a positive tone for the meeting. Remind participants that they will
be looking at process flaws, and that they must avoid even joking comments that might belittle the data or solu-
tions discussed.

� Issues selection. Reiterate the reasons for selecting this meeting’s particular defect types. Let people make initial
comments. Address concerns about potential data inaccuracies (if they come up at this point) by emphasizing the
solution-oriented nature of the brainstorming process. Suggest that inaccuracies matter less when combining pie
wedges to consider solutions. For example, for the sample division meeting, some engineers had a hard time call-
ing some defects “user interface” as opposed to “specifications.” We simply used both labels for such defects dur-
ing the meeting instead of getting sidetracked on resolving the differences. You want to get people ready to share
their defects by discussing a future time (like their next major product release) when they will have done some-
thing in their process to eliminate the reasons for the defects.

� Review the defects brought to the meeting. Have engineers read their own defects, root causes, and solutions. The
major reason to do this is to get attendees involved in the meeting in a nonthreatening way. Thus, don’t criticize
those who did not prepare, rather encourage them to contribute in real time. Unlike inspections, root-cause analy-
sis meetings require very little preparation time for attendees. After their first meeting, attendees will realize this,
and it will be easier to get them to review their defects before the next meeting.

Get in a creative, brainstorming mood by showing the engineers that all their inputs are right, and begin to form a shared
understanding of terminology and definitions, and an acceptable level of ambiguity. This section also gives you some idea
whether there is some enthusiasm for any particular defect types. You can use such energy later to motivate action.

The following two examples are from the root-cause meeting held by the example HP division. There were 12 engineers and
managers at this meeting.

1. User-interface defect: There was a way to select (data) peaks by hand for another part of the product, but not
for the part being analyzed.

Cause: Features added late; unanticipated use.

Article 2 August 1996 Hewlett-Packard Journal 7

Proposed way to avoid or detect sooner: Walkthrough or review by people other than the local design team.

2. Specifications defect: Clip function doesn’t copy sets of objects.

Cause: Inherited code, neither code nor error message existed. Highly useful feature, added, liked, but never
found its way back into specifications or designs.

Proposal to avoid or detect sooner: Do written specifications and control creeping features.

� Perform analysis. Create fishbone diagrams2,6 from combined root causes and additional comments. Use this
discussion to bring the group from their individual premeeting biases regarding defects to a group consensus
state. A useful technique for grouping the defects is to write the suggested causes on movable pieces of paper.
Then have the group silently move the papers into groupings of related areas. If some of the papers move back
and forth between two groups, duplicate them. The resulting groupings are called an affinity diagram.7 These
are major bones of the fishbone that the group must name. Don’t expect the fishbone to be perfect here or even
complete. The next session will potentially contribute more. Also, don’t get concerned about form. Let the
group know that a fishbone is just a means to an end, that it will be cleaned up after the meeting, and that it is
likely to change even after that point. The fishbone diagrams in Figs. 7 and 8 are from analyzing the two defect
types mentioned above.

� Take a break. This type of meeting takes a lot of energy and focus. It’s hard to sustain that for two full hours.

� Brainstorm solutions. Use this time as an orthogonal approach to analyzing the issues at hand. This is also the
transition from analysis to action planning for change. Think about what group energy can be turned into solu-
tion planning.

User
Interface

No Central
Location

No Time

Don’t Read
Them

Too Busy to
Do Them

Some Product Parts
Don’t Resemble Others

No Good
Model

Result of
Changes

Oops! (Forgotten)Different
Perspectives

Guidelines Not
Followed

Lack of
Feedback

Lack of
Guidelines

In a Hurry

No
Aesthetics

Users Not Focused
on New Product

Tests Don’t Model
User Environment

Adequately

Some Panels
Not Used As

Much

Prototype
Not Enough

Internal Customers
Decide Based on

Functionality

Lack of
Resources

No Process to
Provide Early

Feedback

Too Many
Combinations

of Features

Corner Cases,
Particular
Problems

Resource
Limits

Decided Based
on Incomplete
Customer Base

Too Many
Details

Fig. 7. Fishbone diagram for the causes of user-interface defects.

For our sample team, there was a lot of group interest in both defect types. Because a task force already was working on
specification defects as a result of the previous root-cause analysis meetings, planning focused on user-interface defects. In the
solution list they created, some of the solutions may seem vague. Remember that the brainstorm list is only an intermediate
step toward defining action steps. Just be sure that the group understands what it means by the solutions. If members seem
to understand the solutions, there is no need to slow down the brainstorming process for more precise definitions. These
can be added later.

Article 2 August 1996 Hewlett-Packard Journal 8

Changing
Environment

Limited Understanding External Reference Specification

Specifications
Defects

Hardware
Changes

System
Architecture

User Needs Not
Well Understood/

Interpreted

No Next
Bench Internal Chemists Not

Always Same as External

New Technologies
Insufficient

Training

Backward
Compatibility

Not Understood

Specification Too
Complicated

Poor
Organization

No Standard FormatSpecification Too
Complicated

Unforeseen
Side Effects

Lack of
Hardware

Specification

Not Current

Informal
Control

Mechanism

Inadequate
Training

Inadequate Project
Communications

Don’t Know
One Exists

None Provided
With Inherited

Product

No Process for
Inheriting Product

No ERS
Created

Lack of Laboratory Standard
for Documentation

Lack of Laboratory Standard
for Documentation

Internal

Management
Didn’t Decide

Not Consistent
Across Division

ERSs Don’t
Fit Together

External

Interfaces to Operating
System Not Clearly

Documented

Operating
System Rolls

Division
Reorganization

Charter Changes

Technology

Insufficient
Training

Fig. 8. Fishbone diagram for the causes of specifications defects.

The solution list they created is as follows:

1. Learn from past experience—track user interfaces, particularly when changes occur.

2. When new functionality is thought of or added, always design and specify user-interface implications.

3. Evaluate other applications.

4. Use a checklist when designing panels.

5. Use the Caseworks design tool.

6. Complete an entire feature when you do it.

7. Give a new feature to someone else to use right away.

8. Solicit thoughtful feedback. Create guidelines for feedback and watch users use interfaces.

9. Perform usability walkthroughs and training.

10. Use standard modules (e.g., common dialog boxes).

� Test for commitment. Normally there is no need for this section, but some organizations that are more tightly
controlled than others may not feel empowered to implement solutions. In these organizations, solutions should
be directed toward doing what the group feels it is empowered to do. When those solutions are successful, they
can be more broadly or completely applied. You may need to test to identify the roadblocks to change (e.g., time,
schedule, etc.).

Our example HP division seemed very committed. This was reinforced in the next step when several people volunteered to
initiate specific changes.

Article 2 August 1996 Hewlett-Packard Journal 9

� Plan for change. Discuss which defects can be eliminated with the proposed solution. Create an action plan with
responsibilities and dates. A model action plan might contain the following steps:

1. Establish working group 10/8
2. Meet and define outputs 10/15
3. Present objectives and gather inputs 11/1
4. Create a change process and artifacts 12/1
5. Inspect and fix process and artifacts 12/15
6. Celebrate
7. Use and measure results. 2/1

Our example division team decided to create guidelines for user interface designs that addressed many of its
fishbone-diagram branches. The division’s action plan consisted of the following steps.

1. Patty will create a checklist for designing panels. (First pass by 12/17)

2. The project manager will set expectations that all new functionality will be accompanied by design and
specification implications. (Consider using new specification formats.)

3. Art will give the project team a presentation on Caseworks.

4. Follow up the project presentation with a discussion on the use of prototyping.

Remember to end the meeting with a clear understanding of ownership and responsibility. Use standard
project-management techniques to plan and schedule follow-up.

Postmeeting:
� Review meeting process. The organization champion and root-cause facilitator review the process and develop

changes to meeting format, data collection, analysis, and responsibilities. They should redo the fishbone diagram,
being careful not to change it so much that participants no longer feel that it is theirs. Promptly send out meeting
notes that include the fishbone diagram, responsibilities and action items, and schedule dates.

� Capture process baseline data. As part of structuring a process improvement project for success, someone (the
organization champion) should record a minimum amount of process information before and after the project.2

It is particularly important to document the basic divisional processes so that when the improvement is done, the
group can better understand other influences besides the particular changes that were made. In this example, the
team didn’t do this step.

Results from Eliminating Defect Root Causes
The team from the example division did their checklist and used it during their next project. It had 30 items to watch out for,
based on their previous experience and their defects. Fig. 9 shows an excerpt from their checklist. Over 20 percent of the
defects on their previous project had been user-interface defects (though the division-wide average was lower). The results
of their changes were impressive.

7. Are fields case sensitive or not? What implications are there?
8. Are abbreviations kept to a minimum?
9. Are there any spelling mistakes on the panel?

10. Does the panel have a title that matches the action of the panel?
11. Is the screen too crowded? For data entry, less than 50 percent of the

panel should be writing. Controls should “fill” the panel without
cluttering it.

12. Is help available to the user? Is there a help line to aid the user in
understanding the field?

13. Has the help writer been updated with information on the new panel?
14. Are the units for edit fields given when appropriate?

Fig. 9. A checklist of things to look for while developing dialog boxes.

� They reduced the percentage of user-interface defects in test for their new year-long project to roughly five percent
of their total system test defects.

� Even though the project produced 34 percent more code, they spent 27 percent less time in test.

Of course, other improvement efforts also contributed to their success. But the clear user interface defect reduction showed
them that their new guidelines and the attention they paid to their interfaces were major contributors.8 Finally, the best
news is that customers were very pleased with the user interface, and initial product sales were very good.

Article 2 August 1996 Hewlett-Packard Journal 10

Lab
Management

Root-Cause
Solution Teams

Repair
Engineer

Just Do It!
Small- or Medium-Scale

Improvement
Implementations

• Assign Introduction
and Discovery Phases
and Root Cause

• Complete Lab Text
Template

Large-Scale
Improvement
Suggestions

Defect
Reports Repair the

Defect

Final Root
Cause

Release-Based
Metrics

Time-Based
Metrics

Supplies More
Information
as Needed

Fig. 10. Root-cause analysis process.

Two other project teams finished their projects recently, and their results were equally impressive. Both projects used new
standard divisional specification templates created to eliminate many of the root causes shown in Fig. 8. A cross-project
team task force had created two two-page specification templates (one for user-interface-oriented routines, one for
software-interface-oriented ones) that they felt would help. Both teams substantially reduced specification defects
compared with their previous project levels. While the reason for one team’s reduction could possibly be that the project was
second-generation, the other project wasn’t.

While the action steps discussed here follow those of successful improvement projects at one HP division, they can also be
applied in organizations with different defect patterns and business needs. One of the division people who worked with all
three project teams summarized their results:
“ . . . We must conclude that the root-cause approach is an effective mechanism to identify and introduce change into our
software development process.”9

Continuous Process Improvement Cycle
Some organizations have felt that root-cause analysis is so beneficial that they now use it to pursue continuous process
improvement. It appears to be a natural evolution from post-process root-cause analysis successes. This approach extends
the supporting infrastructure and requires an ongoing management commitment.

The first step that an organization generally takes is to widely adopt root-cause information logging by engineers. Causal
information is then included as a normal part of the defect-handling process. Analysis is triggered in a variety of ways, often
by a product or system release. Sometimes it is triggered by the end of a development phase or a series of inspections. It can
also be triggered by an arbitrary time period. Fig. 10 shows how one HP division runs its process. Root-cause solution teams
are empowered by management to initiate smaller process improvements.10 More far-reaching improvements still require
lab management approval.

Knowing which defects occur most often in test or later helps to focus improvement efforts. We saw two examples of this in
the post-project root-cause analysis discussion. The continuous process improvement cycle encourages examination of
similar data throughout the development process. Take the HP division whose test data was shown as the lower-right pie
chart in Fig. 4. It also captured data for specifications, design, and code inspections. All this data is shown in Fig. 11. Some
caution should be used in interpreting this specific data, since it was not uniformly collected. For example, there may have
been a higher percentage of design work products than code work products, but still less than there was code tested.
Nevertheless, this figure suggests some interesting questions and reveals possible insights.

The bars above the centerline show counts for different defects that were found in the same phase in which they were
created. Tall bars represent good opportunities to reduce these defect sources significantly. For example, the large number
of module design defects suggests that a different design technique might be needed to replace or complement existing
methods.

The bars below the line show counts for defects found in phases after the ones in which they were created. The later defects
are found, the more expensive they are to fix. Therefore, the tall bars are sources of both better prevention and earlier

Article 2 August 1996 Hewlett-Packard Journal 11

detection opportunities. For example, the requirements, functionality, and functional description defects combine to suggest
that designs may be changing because of inadequate early product definition. It might be useful to use prototypes to reduce
such changes.

It is clear that this type of data can contribute to more informed management decisions. It also provides a way of evaluating
the results of changes with better precision than in the past. The amount of effort required to sustain a continuous process
improvement cycle will vary, depending largely on the cost of implementing the changes suggested by analyses. Which
changes are chosen for implementation will depend on other business aspects besides the projected costs and benefits. Just
remember that the cost to sustain failure-analysis practice and modest improvements is small, and the returns have proven
to far outweigh those costs.2,5,8

Conclusion
Process improvement projects are started in many ways, for many reasons. In the software field especially, processes are
changing and adapting daily, and software products and businesses are also rapidly evolving. One of the most effective ways
to both motivate and evaluate the success of net improvements is to look at defect trends and patterns. This paper has
shown how software defect data is a powerful management information source. Using it effectively will help achieve an
optimal balance between reacting to defect information and proactively taking steps toward preventing future defects. HP
divisions have used several successful approaches to handling defect causal data. The three root-cause analysis processes
described in this paper are positioned against a suggested five-level maturity model shown in Fig. 12.

Like many other best practices, failure analysis can be applied with increasing levels of maturity that lead to different
possible paybacks. HP’s experience says that the biggest benefits of driving to higher maturity levels are:

� Increased likelihood of success when implementing process changes, particularly major ones

� Accelerated spread of already-proven best practices

� Increased potential returns because necessary infrastructure components are in place.

Our successful results from three failure-analysis approaches are very encouraging. While the time it takes to progress to
higher maturity levels will vary among groups, our experience suggests that failure analysis starts providing returns almost
immediately, particularly in visualizing progress.

Ironically, the main limiter to failure-analysis success is that many managers still believe that they can quickly reduce total
effort or schedules by 50 percent or more. As a result, they won’t invest in more modest process improvements. This
prevents them from gaining 50 percent improvements through a series of smaller gains. Because it takes time to get any
improvement adopted organization-wide, these managers will continue to be disappointed.

It has not been difficult to initiate use of the Fig. 3 defect model and the root-cause analysis process. The resulting data has
led to effective, sometimes rapid, improvements. There are few other available sources of information that are as useful in
identifying key process weaknesses specific to an organization. This information will help to drive process improvement
decisions and commitment in an organization.

Fo
un

d
in

 L
at

er
 P

ha
se

(In
cr

ea
si

ng
 C

os
t)

Fo
un

d
in

 S
am

e
Ph

as
e

as
 C

re
at

ed

80

Defects

60

40

20

0

20

40

Specification
Inspections

Design
Inspections

Code
Inspections Test

Re
qu

ir
em

en
ts

Fu
nc

tio
na

lit
y So

ftw
ar

e
In

te
rf

ac
e

H
ar

dw
ar

e
In

te
rf

ac
e

U
se

r I
nt

er
fa

ce

U
se

r I
nt

er
fa

ce D
at

a
D

ef
in

iti
on

M
od

ul
e

D
es

ig
n

Pr
oc

es
ss

/In
te

rp
ro

ce
ss

Er
ro

r C
he

ck
in

g

Fu
nc

tio
na

l D
es

cr
ip

tio
n

Er
ro

r (
D

at
a)

 H
an

dl
in

g

D
at

a
H

an
dl

in
g

Lo
gi

c

A
dd

re
ss

in
g

(L
og

ic
)

Co
m

pu
ta

tio
n

M
od

ul
e

In
te

rf
ac

e

Design

Where Caused

Specifications Coding

Fig. 11. A defect profile, an interesting way of analyzing defect data during the continuous process improvement

phase.

Article 2 August 1996 Hewlett-Packard Journal 12

Software Failure Analysis Maturity Model

Level 5: Optimizing: Divisional goals set to achieve competitive advan-
tage via specific software capabilities. People given primary
responsibilities that include process improvement through root-cause
analysis.

Level 4: Managed: Root-cause analysis meetings are a regular part of
development process. There may be people responsible for improve-
ments. Not all root-cause analysis meetings result in action items, but
management reviews data.

Level 3: Defined: Defect source information uniformly collected, root-
cause analysis meetings held, but not as a standard part of process.
Data validating subsequent improvements is mostly
anecdotal.

Level 2: Emerging: Defect source information collected, but not neces-
sarily uniformly and not necessarily validated. General agreement on
what requirements, design, and coding are.

Level 1: Initial/Ad hoc: Defect source information not regularly
collected. No recognized divisional defect source patterns. Incomplete
R&D process descriptions.

Continuous
Process

Improvement
Cycle

Post-Project
Root-Cause

Analysis

One-Shot Root-
Cause Analysis

Fig. 12. A five-level software failure-analysis maturity model.

Acknowledgments
I’d like to thank Jan Grady, Debbie Caswell, Cate Meyers, Barbara Zimmer, Dell Fields, Tom Van Slack, and Jean MacLeod
for their helpful suggestions in the development of this article. Finally, thanks to Brad Yackle, Marc Tischler, and others at
HP’s Scientific Instrument Division for sharing their failure-analysis results.

References
1. M. Paulk, B. Curtis, M. Chrissis, and C. Weber, “Capability Maturity Model, Version 1.1,” IEEE Software, July 1993, pp. 18-27.
2. R. Grady, Practical Software Metrics for Project Management and Process Improvement, Prentice-Hall, Inc., 1992, pp. 37, 79,

129, 130, 137-157.
3. G. Stark, G., L. Kern, and C. Vowell, “A Software Metric Set for Program Maintenance Management,” Journal of Systems and

Software 24, 1994, pp. 239-249.
4. D. Clark, “Change of Heart at Oracle Corp.,” San Francisco Chronicle, July 2, 1992, pp. B1 and B4.
5. R. Grady, “Practical Results from Measuring Software Quality,” Proceedings of the ACM, Vol. 36, no. 11, November 1993, pp.

62-68.
6. K. Ishikawa, A Guide to Quality Control, Tokyo: Asian Productivity Organization, 1976.
7. M. Brassard, The Memory Jogger Plus+, GOAL/QPC, 1989.
8. R. Grady, ,“Successfully Applying Software Metrics,” IEEE Computer, September 1994, pp. 18-25.
9. M. Tischler, e-mail message, Aug. 10, 1994.

10. D. Blanchard, “Rework Awareness Seminar: Root-Cause Analysis,” March 12, 1992.

http://www.hp.com/hpj/aug96/augart3.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Article 3 August 1996 Hewlett-Packard Journal 1

HP Press Book Excerpt

Evolutionary Fusion: A Customer-

Oriented Incremental Life Cycle for

Fusion

Creating and maintaining a consistent set of specifications that
result in software solutions that match customer’s needs is always
a challenge. A method is described that breaks the software life
cycle into smaller chunks so that customer input is allowed
throughout the process.

by Todd Cotton

Fusion provides a thorough and consistent set of models for translating the specification of customer needs into a
well-structured software solution. For reasonably small projects, the sequential steps of Fusion map well into the sequential
software life cycle commonly known as the waterfall life cycle. For larger projects, those representative of most
commercial and IT software projects today, an incremental life cycle such as Evolutionary Development provides a much
better structure for managing the risks inherent in complex software development. This paper introduces Evolutionary
Fusion, the combination of Fusion, with its advantages provided by object orientation, and the key Evolutionary
Development concepts of early, frequent iteration, strong customer orientation, and dynamic plans and processes.

Although based on the best of other object-oriented methods, Fusion is a relatively new method. The Fusion text1 was
published in October 1994, and as a member of the Hewlett-Packard software development community, the author was
exposed to preliminary work by Derek Coleman and his team earlier in 1993. The response from the first few teams to apply
Fusion to their work was extremely encouraging. As members of the Software Initiative, an internal consulting group
focused on further extending Hewlett-Packard’s software development competencies, the author and his colleagues have
helped facilitate the rapid adoption of Fusion within Hewlett-Packard. Fusion is now used in nearly every part of
Hewlett-Packard, contributing to products and services as diverse as network protocol drivers, real-time instrument
firmware, printer drivers, internal information systems, and even medical imaging and management products. This paper is
based on these collected experiences.

To simplify the presentation of concepts, the paper first discusses experiences gained working with small, collocated
development teams. Later sections deal with the extensions that have been made to scale Evolutionary Fusion up for larger
teams split across geographic boundaries. See the Sidebar: ”What is Fusion?” for an explanation of this software
development method.

Need for an Alternative to the Waterfall Life Cycle
The traditional waterfall life cycle for software development has served software developers well. By breaking software
projects up into several large sequential phases—typically an investigation or definition phase, a design phase, an
implementation phase, and a test phase—project teams could move forward with confidence. System requirements were
captured through significant customer interaction during the definition phase. Once these requirements were complete, the
other phases could progress with focus and efficiency since few if any changes to the specification would be allowed. With
limited competition and with products that would remain viable for years, it was safe to assume that the system
requirements captured many months or even years earlier would still be accurate. Unfortunately, this is no longer the
environment in which software is developed.

Today, our ability as software engineers and project managers to accommodate all risks and accurately schedule projects that
may include tens or even hundreds of engineers over several years of development is seriously challenged. Customers’
needs, competitive products, and even the development tools we use can change as often as every few months. We have at
least two choices. We can try to further refine our estimation and scheduling skills, fixing more parameters of our projects
at very early stages of knowledge and experience, or we can look for an alternative development life cycle that better
supports the dynamic and complex nature of our business today.

* Adapted from Object-Oriented Development at Work: Fusion in the Real World, Ruth Malan, Reed Letsinger, and Derek Coleman, Editors, Hewlett-Packard
Professional Books, Published by Prentice Hall PTR, Prentice-Hall Inc., 1996, ISBN 0-13–243148–3. All rights reserved.

http://www.hp.com/hpj/aug96/augart3a.pdf

Article 3 August 1996 Hewlett-Packard Journal 2

One alternative to the waterfall life cycle is Barry Boehm’s2 spiral life cycle. Actually more of a meta life cycle, the spiral life
cycle can be instantiated or “unwrapped” in a number of ways. One instantiation is the iterative life cycle, an approach
advocated by industry-leading OO (object-oriented) methodologists such as Jim Rumbaugh3 and Grady Booch.4 An iterative
life cycle replaces the monolithic implementation phase of the waterfall life cycle with much smaller implementation cycles
(Fig. 1) that start by building a very small piece of the overall functionality of the system and then add to this base over time
until a complete system is delivered. Incremental development “determines user needs and defines the system
requirements, then performs the rest of the development in a sequence of builds.”5

Investigate Design Plan Cycle 1 Cycle 2 Cycle 3 Cycle N Test

Investigate Design Plan Cycle 1 Cycle 2 Cycle 3 Cycle N Test

DesignPlan Implement Test

DesignPlan Implement Test

Investigate Design Implement Test

Customers: Use N – 1 Plan N + 1

Waterfall Development Life Cycle

User Feedback

Incremental Development Life Cycle

Evolutionary Development Life Cycle

Fig. 1. Different models of the software development life cycle.

Another instantiation of the spiral life cycle is Evolutionary Development, proposed by Tom Gilb.6 Evolutionary
Development adds to the iterative life cycle a much stronger customer orientation that is implemented through an explicit
customer feedback loop. Evolutionary Development “differs from the incremental strategy in acknowledging that the user
need is not fully understood and all requirements cannot be defined up front ... user needs and system requirements are
partially defined up front, then are refined in each succeeding build.”5 The Evolutionary Development life cycle has been
used successfully within Hewlett-Packard since 1985 and was the natural choice to combine with Fusion when we needed
an alternative to the waterfall life cycle.

Evolutionary Development

Evolutionary Development (EVO) is a software development method and life cycle that replaces traditional waterfall
development with small, incremental product releases or builds, frequent delivery of the product to users for feedback, and
dynamic planning that can be modified in response to this feedback. As originally presented by Tom Gilb, the method had
the following key attributes:

1. Multiobjective-driven

2. Early, frequent iteration

3. Complete analysis, design, build, and test in each step

4. User orientation

5. Systems approach, not merely algorithm orientation

6. Open-ended basic systems architecture

7. Result orientation, not software development process orientation.

Using EVO, a product development team divides the project into small chunks. Ideally, each chunk is less than 5% of the
overall effort. The chunks are then ordered so that the most useful and easiest features are implemented first and some
useful subset of the overall product can be delivered every one to four weeks. Within each EVO cycle, the software is
designed, coded, tested, and then delivered to users. The users give feedback on the product and the team responds, often
by changing the product, plans, or process. These cycles continue until the product is shipped.

Article 3 August 1996 Hewlett-Packard Journal 3

EVO is thus characterized by early and frequent iteration, starting with an initial implementation and followed by frequent
cycles that are short in duration and small in content. Drawing on ongoing user feedback, planning, design, coding, and
testing are completed for each cycle, and each release or build meets a minimum quality standard. This method offers
opportunities to optimize results by modifying the plan, product, or process at each cycle. The basic product concept or
value proposition, however, does not change.

At Hewlett-Packard, we have found that it is possible to relax some of Gilb’s ideas regarding EVO.6* In particular, it is not
absolutely necessary to deliver the product to real customers with customer-ready documentation, training, support, and so
on, to benefit from EVO. For instance, customers participating in the feedback loop change during the development process.
Results from the early cycles of development are typically given to other team members or other project teams for
feedback. Less sensitive to the lack of complete documentation and training materials, they can still give valuable feedback.
Results from the next several cycles are shared with surrogate customers represented by members of the broader
Hewlett-Packard community. The goal is still to get the product into the hands of actual customers as early as possible.

There are two other variations to Tom Gilb’s guidelines that we have found useful within Hewlett-Packard. First, the
guideline that each cycle represent less than 5% of the overall implementation effort has translated into cycle lengths of one
to four weeks, with two weeks being the most common. Second, ordering the content of the cycles is used within
Hewlett-Packard as a key risk-management opportunity. Instead of implementing the most useful and easiest features first,
many development teams choose to implement in an order that gives the earliest insight into key areas of risk for the
project, such as performance, ease of use, or managing dependencies with other teams.

Benefits of EVO
The teams within Hewlett-Packard that have adopted Evolutionary Development as a project life cycle have done so with
explicit benefits in mind. In addition to better meeting customer needs or hitting market windows, there have been a
number of unexpected benefits, such as increased productivity and reduced risk, even the risks associated with changing
the development process.

Better Match to Customer Need and Market Requirements. The explicit customer feedback loop of Evolutionary Development
results in the delivery of products that better meet the customers’ need. The waterfall life cycle provides an investigation or
definition phase for eliciting customer needs through focus groups and storyboards, but it does not provide a mechanism for
continual validation and refinement of customer needs throughout the long implementation phase. Many customers find it
difficult to articulate the full range of what they want from a product until they have actually used the product. Their needs
and expectations evolve as they gain experience with the product. Evolutionary Development addresses this by incorporating
customer feedback early and often during the implementation phase. The small implementation cycles allow the
development team to respond to customer feedback by modifying the plans for future implementation cycles. Existing
functionality can be changed, while planned functionality can be redefined.

One Hewlett-Packard project used a variation of Evolutionary Development that also included an evolutionary approach to
product definition.7 During the first month, the development team worked from static visual designs to code a prototype. In
focus group meetings, the team discussed users’ needs and the potential features of the product and then demonstrated
their prototype. The focus groups expressed strong support for the product concept, so the project proceeded to a second
phase of focus group testing incorporating the feedback from the first phase. Once the feedback from the second round of
focus groups was incorporated, the feature set was established and the product definition completed.

Implementation consisted of four-to-six-week cycles, with software delivered to customers for use at the end of each cycle.
The entire development effort spanned ten months from definition to product release. The result was a world-class product
that has won many awards and has been easy to support.

Hitting Market Windows. To enhance productivity, many large software projects divide their tasks into independent subsets
that can be developed in parallel. With few dependencies between subteams, each team can progress at its own pace. The
risk in this approach is the significant effort that must be invested to bring all the work of these subteams together for final
integration and system test. When issues are uncovered at this late stage of development, few options are available to the
development team. It is difficult if not impossible to prune functionality in a low-risk manner when market windows,
technology, or competition change. The only option open to the team is to continue on, finding and removing defects as
quickly and as efficiently as possible (see Fig. 2).

With an EVO approach, the team has greater flexibility as the market window approaches. Two attributes of EVO contribute
to this flexibility. First, the sequencing of functionality during the implementation phase is such that “must have” features are
completed as early as possible, while the “high want” features are delayed until the later EVO cycles. Second, since each
cycle of the implementation phase is expected to generate a “complete” release, much of the integration testing has already
been completed. Any of the last several EVO cycles can become release candidates after a final round of integration and
system test. When an earlier-than-planned release is needed, the last one or two EVO cycles can be skipped as long as a
viable product already exists. If a limited number of key features are still needed, an additional EVO cycle or two can be
defined and implemented as illustrated in Fig. 3.

* See also Article 5.

http://www.hp.com/hpj/aug96/augart5.htm

Article 3 August 1996 Hewlett-Packard Journal 4

Investigate

Design Implement Test

ImplementDesign

Investigate

You know you’re
in trouble !

Market Window

Original Plan

Execution

Actual Project Checkpoints�

� � �
Test

Fig. 2. Hitting market windows with a waterfall life cycle.

Investigate Design Plan Cycle 1 Cycle
N – 1 Cycle N Test

Market
Window

Original Plan

Execution 1 (Early Release)

Execution 2 (Added Features or Schedule Slippage)

Existing Project Checkpoints�

Optional Project Checkpoints

� � �

�

Investigate Design Plan Cycle 1 �

� � �Investigate Design Plan Cycle 1 �

Cycle
N – 1 Test

Cycle N
Cycle
N + 1 Test

Cycle
N – 1 �

�

� �

Fig. 3. Hitting market windows with an evolutionary life cycle.

Engineer Motivation and Productivity. Some of the gains in productivity seen by project teams using EVO have been attributed
to higher engineer motivation. The long implementation phase of the waterfall life cycle is often characterized by large
variations in engineer motivation. It is difficult for engineers to maintain peak productivity when it may be months before
they can integrate their work with that of others to see real results. Engineer motivation can take an even greater hit when
the tyranny of the release date prohibits all but the most trivial responses to customer feedback received during the final
stages of system test.

EVO has led to higher productivity for development teams by maintaining a higher level of motivation throughout the
implementation phase. The short implementation cycles keep everyone focused on a small set of features and tasks. The
explicit customer feedback loop and the small implementation cycles also allow the development team more opportunity to
respond to customer feedback and thereby deliver a product that they know represents their best work.

Quality Control. Although software development is in many ways a manufacturing process, software development teams have
struggled to apply quality improvement processes such as Total Quality Control (TQC). Unlike the manufacturing
organizations that can measure and refine processes with cycle times of hours, minutes, and even seconds, the waterfall life
cycle gave cycle times of months or years before the software development process repeated. With EVO, the software
implementation cycle is dramatically reduced and repeated multiple times for each project. All parameters of the
implementation process are now available for review and improvement. The impact of changes in processes and tools can
be measured and refined throughout the implementation phase.

Reducing Risk when Changing the Development Process. Many teams experience considerable anxiety as they make the
transition to an object-oriented approach to development. The transition to OO usually entails a number of changes in the
way a software engineer works. There are new analysis and design models to apply, new notations to master, and new,
occasionally eccentric, tools and compilers to learn. There is also valid concern about adopting a new method at the
beginning of the development process. Few teams are willing to make a full commitment to a new method when they have
little experience with it. There may even be organizational changes anticipated if the organization is looking for large-scale
productivity gains through formalized reuse.

Development teams and managers want some way to manage the risks associated with making so many simultaneous
changes to their development environment. EVO can help manage the risks. The repeating cycles during the implementation
phase provide for continual review and refinement of each parameter of the development environment. Any aspect of the
development environment can be dropped, modified, or strengthened to provide the maximum benefit to the team.

Article 3 August 1996 Hewlett-Packard Journal 5

Costs of EVO
Adopting Evolutionary Development is not without cost. It presents a new paradigm for the project manager to follow when
decomposing and planning the project, and it requires more explicit, organized decision making than many managers and
teams are accustomed to.

In traditional projects, subsystems or code modules are identified and then parceled out for implementation. As a result,
planning and staffing of large projects were driven by the structure of the system and not by its intended use. In contrast,
Evolutionary Development focuses on the intended use of the system. The functionality to be delivered in a given cycle is
determined first. It is common practice to implement only those portions of subsystems or modules that support that
functionality during that cycle. This approach to building a work breakdown structure presents a new paradigm to the
project manager and the development team. Subsystem and module completion cannot be used for intermediate milestone
definition because their full functionality is not in place until the end of the project. The time needed to adopt this new
paradigm and create an initial plan can be a major barrier for some project teams.

Many development teams lack a well-defined, efficient decision-making process. Often they make decisions implicitly within
a limited context, risking the compromise of the broader project goals and slowing progress dramatically. Evolutionary
Development forces many decisions to be made explicitly in an organized way, because feedback on the product is received
regularly and schedules must be updated for each implementation cycle.

The continual stream of information that the project team receives must be translated into three categories of decisions:
changes to the product as it is currently implemented, changes to the plan that will further the product implementation, and
changes to the development process used to develop the product. Fortunately, because of EVO’s short cycle time, teams
have many opportunities to assess the results of decisions and adjust accordingly.

Evolutionary Fusion

Fusion and Evolutionary Development are complementary. One of the primary assumptions of EVO is that one can
decompose the functionality of a project into small manageable chunks. It is also expected that these chunks will provide
some measurable value to the intended user and can thus be given to the user for feedback. Fusion provides the method of
decomposition. At the highest level, Fusion decomposes the functionality of a system into use scenarios. Use scenarios are
defined from the perspective of a user or agent of the system and are expected to capture a use of the system that provides
some value to the agent.

EVO also presupposes that an architecture capable of accommodating all the expected functionality of the system can be
defined prior to implementation. This architecture must be flexible enough to accommodate new or redefined functionality
resulting from customer feedback. Fusion helps create this flexible architecture. The object model provides an architecture
that encapsulates common functionality into classes and provides flexibility and extensibility through generalization and
specialization. Fusion also accommodates large-scale change through the well-defined linkages between models. If necessary,
changes to functionality can be rolled all the way up to the use scenarios and then cascaded back down through the
appropriate analysis and design models, replacing guesswork in assessing the impact of a change with a more systematic
approach.

Evolutionary Fusion divides a project into two major phases: the definition phase and the development phase (Fig. 4). During
the definition phase, a project’s functionality is specified and its viability as a product or system is first estimated. The Fusion
analysis models play a key role in this phase. The use scenarios serve to remodel the specification document, checking it for
clarity and completeness. They can also be reviewed with customers to validate the development team’s understanding of
customer needs. The object model captures the initial architecture for the system and provides additional checks of the
specification. The data dictionary captures the team’s emerging common vocabulary and understanding of the problem
domain. The operation model, through its system operation descriptions, gives an indication of the size and complexity of the
project. This information is critical for estimating resource needs and developing the initial plan for the development phase.

The second phase is the development phase, in which code is incrementally designed, implemented, and tested to meet the
specification. Each development cycle follows the same pattern. First, the analysis models are reviewed for completeness
with respect to the functionality to be implemented during that cycle. Next, the Fusion design models are created or
updated to support the functionality. And finally, the code is written and regression tests executed against the code. In
parallel with the development activities of the team, selected users or customers of the system are working with and
providing feedback on the release from the previous cycle. This feedback is used to adjust the plan for the following cycles.
To complete the development phase, a final round of integration and system testing is done. The next two sections discuss
these two phases in more detail.

Definition Phase
The definition phase is best characterized as a period of significant communication and thought. Communication must
occur between all members of the project team to make sure that everyone shares a common understanding of the project’s
goals. Thought must be put into the specification document to make sure that it is complete and unambiguous and that it
meets the requirements. Communication must occur between the development team and the intended users of the system to

Article 3 August 1996 Hewlett-Packard Journal 6

Develop
Specification

Analysis Models
(First Pass)

Planning (Group
and Prioritize)

Development
Cycle 1

Development
Cycle 2

Development
Cycle N

Integration and
System Test

Implement Verify (Test)
Refine Analysis

Models
Develop Design

Models

Classes
and

Code

Object
Interaction

Graphs

Visibility
Graphs

Inheritance
Graphs

Feature
Set 1

Feature
Set 2

Feature
 Set N

sys op K
sys op G ...

Operation
Model

Object
Model

Data
Dictionary

Use
Scenarios

Product
Specification

Definition Phase Development Phase

Feature
Set 1

Feature
Set 2

Feature
Set N

Use
Scenarios

Customer
Feedback

Fig. 4. Evolutionary Fusion life cycle.

ensure that the system, at least as it can be specified on paper during this early stage of the project, will meet their needs.
Thought must go into defining an architecture capable of supporting the intended functionality of the full system. The goal is
to identify and resolve as many issues as possible during this phase. Specification errors that are not resolved during this
phase can be extremely costly to repair later.

Our experience has shown that the Fusion analysis models are ideal for stimulating the thought and supporting the
communication that must occur during the definition phase.

Analysis Models—First Pass
Like Fusion, Evolutionary Fusion requires some form of system specification as a starting point, and just about any level of
detail in the system specification will do. When the specification is at a high level, the analysis models serve to identify large
numbers of issues and questions that need to be resolved before development can begin. When the specification is at a more
detailed level, the analysis models serve to remodel and recapture high-level structure and functionality that may be lost in
the detail. We have yet to define what level of detail in the system specification yields the most efficient definition phase for
Evolutionary Fusion. Regardless of the level of specification detail, the analysis models provide the beginning of a common
vocabulary and understanding of the problem domain that will serve the team well throughout the project.

The most critical component of the system specification is the value proposition.8 The value proposition clearly articulates
why the intended customer of the system will choose to use it over the other options available. The functionality defined in
the specification is the development team’s initial best estimate as to how to deliver that value proposition. There are
usually countless other ways to deliver it. The explicit customer feedback loop of Evolutionary Fusion will validate the best
estimate over time and will suggest better ways to deliver the value proposition. The value proposition itself should remain
constant throughout the entire development process. If the value proposition changes during the development phase, it will
be quite difficult for the team to make all the modifications necessary to implement a new one and still end up with a
coherent set of product features.

Use Scenarios
The first analysis model to be created is the set of use scenarios. To provide some structure for this activity, it is useful to
first generate a list of all the agents that exist in the system’s environment. It can often be a challenge to decide what
constitutes an agent. For example, the file system provided by the operating system is clearly part of any system’s
environment. It can be expected to provide services to and make demands on the system being defined. Representing the file
system as an agent does not add any additional clarity to the team’s understanding of the system under definition. However,

Article 3 August 1996 Hewlett-Packard Journal 7

DatabaseSystemUser

�50 ms

Place Segmentation Marker

Display Segmentation Marker

Start Format Segmentation

Store Segmentation Marker

Use Scenario A

Fig. 5. Use scenario with time-constraint annotation.

representing specific files as agents, such as configuration files, legacy databases, or data input files, does add clarity. In one
project, it was useful to model, as an agent, a critical data input file generated externally to the system. A general rule of
thumb is that an agent must add to the understanding of the system if it is to be included at this early stage.

Once the list of agents is complete, each agent can be examined with respect to the demands it will make on the system.
These demands are captured as use scenarios. As with defining agents, determining an appropriate level of granularity for
the use scenarios can be a challenge. Another rule of thumb is that use scenarios should provide complete chunks of value
from the perspective of the agent. In the project mentioned above, the system was modeled as providing value to the input
file by accepting records of data from the file and translating those records into a format that could be used by the rest of
the system. This approach will help avoid the issue of trying to keep all use scenarios at the same level of granularity. It is
the agent that defines the appropriate level of granularity, not the system as a whole.

Once the use scenarios have been specified, each is diagrammed to decompose it further into discrete system operations
and events. It is also useful to annotate in the margins of the use scenario diagram any time constraints that may exist (see
Fig. 5). For systems of reasonable size, it is difficult to define a correct set of use scenarios on the first try. Building the use
scenarios is itself an iterative process of refinement.

Object Model
As Ould9 states in his text on software engineering strategies,

“The success of the incremental delivery approach rests on the ability of the designer to create—from the start—an ar-
chitecture that can support the full functionality of the system so that there is not a point during the sequence of deliver-
ies where the addition of the next increment of functionality requires a massive re-engineering of the system at the archi-
tectural level (p. 59).”

The Fusion object model, the next analysis model to be created, serves as that architecture.

Once the use scenarios are complete, the development team has a much clearer understanding of the demands that will be
placed on the system. The use scenarios are an excellent source of information for building the object model. The use
scenario diagrams can be stepped through, making sure that analysis classes exist to support the need of each system
operation. It is also quite common that building the object model will generate further refinements and improvements to the
use scenarios.

Operation Model
The last analysis model to be created during the definition phase is the operation model. It documents in a declarative
fashion the change in the state of the system as it responds to a system operation. Each system operation is described using
only terms from the use scenarios, object model, and data dictionary.

A complete specification of the system exists when the operation model is completed. The use scenarios capture the
intended uses of the system from the agents’ point of view. The object model captures the high-level architecture of the
system. The operation model documents the effect that each system operation has on the system. The creation of each
model has stimulated the thought necessary to identify and resolve issues, while the notation for each model establishes a
common communication format for the team.

Managing the Analysis Process
An appropriate question to ask at this point is how much time should be invested in making a first pass at the analysis
models. Although there is no formula that we can offer for Evolutionary Fusion, the application of a progress measurement
technique used by many development teams during implementation works surprisingly well at this early stage of
development. During the integration and system test phase, many teams compare the rate at which defects are being
identified to the rate at which defects are being isolated and repaired. In the early part of this phase, the rate of defect
identification exceeds the rate of defect repair. At some later point in this phase, the rate of repair exceeds the rate of

Article 3 August 1996 Hewlett-Packard Journal 8

identification, and estimates can be made on when the desired defect density will be reached and the product can be
released.

A similar approach can be used to track progress during the creation of the analysis models in Evolutionary Fusion’s
definition phase. Any issue identified during the creation of the analysis models can be considered a potential defect in the
specification of the system. As with testing code, the initial attempts to build the analysis models will generate a large
number of potential issues, or defects. As the creation of the analysis models progresses, fewer and fewer issues, or defects,
will be found. Once the rate of resolving, or repairing, these issues exceeds the rate of finding new issues, a completion date
for the first pass at the analysis models can be estimated.

An additional parameter often assigned to defects is a classification that represents the severity of the defect. Few systems
are shipped with known defects that can cause unrecoverable data loss, but many are shipped with known defects that have
only limited impact on the system’s use. It can be helpful to apply a similar classification scheme to the issues found during
analysis.10 Many issues identified will be of such impact that they must be resolved before moving on to the development
phase. Other issues will be of lesser impact and, as such, resolution can be delayed until the development phase. There is
also a third class of issues that relates directly to design or implementation. These must be reclassified as design or
implementation issues and marked for resolution during that phase.

There is an expectation that a team must complete all the analysis phase models before moving on to implementation. Our
experience has shown that this is not the case. It is only necessary to complete a high-level view of the complete system and
to resolve the critical and serious “defects” that have been logged against the analysis models. This approach can also help
teams avoid “analysis paralysis,” the malady that afflicts many teams when they try to resolve every known issue before
moving on to design and implementation. The analysis models will be revisited as the first step of each implementation cycle,
so further additions and refinements can be made then.

It is difficult to accurately estimate the length of the analysis phase, especially if it is the team’s first use of object
technology. Fortunately, using the approach described here can provide early indication of progress so that resources can
be managed accordingly.

Building the Plan
The last task of the Evolutionary Fusion definition phase is to plan the next phase, development. This task consists of three
major steps: assigning ownership for the key roles that must be played during this phase, defining the standard EVO cycle,
and determining the sequence in which functionality will be developed.11

Key Roles. For the development phase to progress in a smooth and efficient manner, it is helpful to define and assign
ownership for three key roles: project manager, technical lead, and user liaison. On large project teams, these roles may be
shared by more than one person. On smaller project teams, a person may play more than one role.

Project manager: Many aspects of the project manager’s role become even more critical with Evolutionary Development.
The project manager must work with the marketing team and the customers to establish the project’s value proposition,
identify key project risks, document all commitments and dependencies, and articulate how Evolutionary Development will
contribute to the project’s success. Agreement on the value proposition is critical, as it will help keep the decision-making
process focused. The key project risks will be used to sequence the implementation so that these risks can be characterized
and addressed as early as possible. The commitments and dependencies will also be a key consideration when sequencing
the implementation cycles. It is also important that the project manager solicit and address any concerns that the project
team has with the Evolutionary Development approach.

The project manager must also define and manage the decision-making process. Although this is often an implicit task of the
project manager, the large amount of information and the increased number of decisions that must be made using
Evolutionary Fusion require that this process be made explicit. Based on the kinds of changes anticipated during the
project, the project manager must consider how information will be gathered, how decisions will be made, and how
decisions will be communicated. With very short development cycles, delayed decisions can slow progress dramatically.

Working with the technical lead, the project manager may also decide to include explicit design cycles in the schedule. For
software architectures and designs that are expected to survive many years, supporting multiple releases or even multiple
product lines, it is important to invest in the evolution of the architecture. As the development phase progresses, certain
isolated decisions that compromise some aspect of the architecture will be made. There will also be new insights into the
architecture and its robustness that could not have been anticipated during the definition phase. Design cycles dedicated to
the architecture will deliver no new functionality for the user. By including tasks such as architecture refinement, design
development, and design inspections, these cycles will deliver to future EVO cycles an architecture that is better equipped
to meet the demands that will be placed on it.

Technical lead: The technical lead is responsible for managing the architecture of the project as well as tracking and helping
to resolve technical issues and dependencies that arise between engineers and between subsystems. The technical lead also
plays a key part in defining the detailed task plans for each implementation cycle. With a broad view of the system, the
technical lead can make sure that tasks scheduled for an implementation cycle are feasible and that they all contribute to
the stated deliverable for the cycle.

Article 3 August 1996 Hewlett-Packard Journal 9

Final Test of Last
Week’s Build

Review and Enhance
Analysis Models for
New Features

Release Last Week’s
Build to Users

Create Design
Models for New
Features

Begin Implementation
of New Features

Incremental Build
Overnight

Weekend Build
from Scratch

Tuesday Wednesday Thursday FridayMonday

All User Feedback
Collected

Functionality Freeze—
No New
Features Added
Beyond this Point

Incremental Build
Overnight

Tuesday Wednesday Thursday FridayMonday

Test New
Functionality

Review Feedback, De-
termine Changes for
Next Release

Test New
Functionality

Weekend Build from
Scratch

Fig. 6. Sample two-week EVO cycle.

User liaison: The user liaison manages the team’s interaction with the users, including setting up the user feedback process
by defining expectations of the users, locating and qualifying users against these expectations, and coordinating any initial
training that the users will need on the system. Once the development phase is underway, the user liaison will be
responsible for collecting feedback, tracking user participation and satisfaction with the process, and ensuring that users
are kept informed of the development team’s response to their feedback.

It is important to keep in mind that the users providing feedback on the system may change over time. In the early
development phase, it may be unrealistic to deliver the system to actual users, since there may simply not be enough
functionality in the system. For these releases, other members of the project team or other members of the organization can
act as surrogates for actual users.

Defining the Standard EVO Cycle. The next step in planning the development phase is to define the standard EVO cycle to be
used. This task includes establishing the length of the cycle as well as the milestones within the cycle. The general rule of
thumb is to keep the cycle length as short as possible. Within Hewlett-Packard, projects have used a cycle length as short as
one week and as long as four weeks. The typical cycle time is two weeks (see Fig. 6). The primary factor in determining the
cycle length is how often management wants insight into the project’s progress and how often they want the opportunity to
adjust the project plan, product, and process. Since it is more likely that a team will lengthen their cycle time than shorten
it, it is best to start with as short a cycle as possible.

Grouping and Prioritizing Functionality. With key roles assigned and the standard cycle defined, the last step in planning the
development phase is to group and prioritize the functionality into implementation chunks. The chunks must be no larger
than can be delivered in the standard cycle time. Prioritization ensures that critical or high-risk features are completed early
and that low-risk features are delivered last. Some of the most common criteria used for grouping and prioritizing
functionality will be discussed later in this section.

The deliverable from the planning phase is an implementation schedule that maps all functionality for the system into
implementation cycles and provides enough detail for the first three or four cycles so that actual implementation can begin.
To help develop this schedule and to maintain a user perspective, the Fusion use scenarios and system operations provide a
useful grouping of system functionality. System operations, which may appear in multiple use scenarios, are grouped
together to define use scenarios.

The first step is to divide the system development into four or five major chunks and to group those use scenarios that
include top-priority functionality into the first chunk (Fig. 7). The rest of the use scenarios can then be grouped into the
following major chunks, with the use scenarios containing the lowest priority functionality in the last chunk. At this stage
each chunk should contain approximately the same number of use scenarios.

The next step is to order the use scenarios within the first chunk using the same criteria as before (Fig. 8). When producing
this ordering, it is not uncommon to move scenarios between groups to achieve a better balance and sequence. Since
system operations may appear in multiple use scenarios, many of the system operations that are contained in the use
scenarios of later groupings will be implemented with use scenarios in earlier groupings. Therefore, it is best to have the
fewest use scenarios in the first chunk and the most in the last chunk.

Article 3 August 1996 Hewlett-Packard Journal 10

Use
Scenario

Use
Scenario

Highest Priority Lowest Priority

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Fig. 7. Prioritize use scenarios.

The system operations from the use scenarios in the first group can now be grouped and sequenced into the first few
implementation cycles (Fig. 9). Keep in mind that the deliverables from each cycle should be defined in such a way that they
can be validated by a user of the system. For these early cycles, the limited functionality may be best validated by another
member of the development team. The key concept is that you must be able to validate the success of the cycle in some
way.

When estimating the number of system operations that the development team can implement in a cycle, experience has
shown that taking the common wisdom of the team and dividing that number in half yields the best results. Because this
approach to development may be new to the team, it is extremely important from a motivational perspective that these first
few implementation cycles be successful. Also, keep in mind that there is a fair amount of infrastructure developed and put
in place during these first few implementation cycles as well. The tools and the process will undergo significant refinement
during these first few cycles. For these reasons, keep the functionality content of the first few implementation cycles to a
minimum.

A technique used widely within Hewlett-Packard is to adopt a naming scheme for the implementation cycles. One team used
the names of wineries from their local Northern California region. As they completed each cycle, their project manager
would buy a bottle of wine from that winery and store it away. Once several cycles were completed, the team would
celebrate by taking the wine to a fine restaurant for lunch.

The final step is to estimate the number of cycles needed for the rest of the intended functionality and to project a final
implementation completion date (Fig. 10). This is accomplished by counting the new system operations that must be
implemented in the rest of the chunks and dividing by the number of system operations that can be completed in each cycle
to give the total number of implementation cycles. In the example used to illustrate the planning process, the estimated
length of the implementation phase is 32 weeks. To facilitate communication, it is useful to assign themes to each of the
implementation chunks. The project team and the users will need both a detailed and a high-level view of the project, but

Highest Priority Lowest Priority

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

1 2 3

Fig. 8. Order the first group of use scenarios.

Article 3 August 1996 Hewlett-Packard Journal 11

there are typically many members of the organization that prefer to see just the “big picture.” The themes can help convey
that big picture.

With the deliverables now defined for the first several EVO cycles, the technical lead can prepare the detailed task list for
these cycles. This detailed task list should include a clear description of the task, an owner for the task, and any
dependencies that the task may have on other tasks within the cycle.

It is not necessary to provide any additional detail for the groupings of use scenarios beyond the first. It is only necessary to
make sure that all functionality as it is defined at this early stage is accounted for and that an overall estimate of the effort is
calculated. It is expected that experiences from the first few implementation cycles will affect future cycles in many ways.
These later implementation cycles will be defined in more detail several cycles before their start date. On small projects with
one or two collocated teams, detailing the next three or four implementation cycles is adequate. On larger projects, it may be
necessary to maintain detailed schedules that reach further out in time.

Highest Priority Lowest Priority

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

1 2 3

sys op X
sys op Y
sys op Z

sys op J
sys op K

sys op A
sys op B
sys op C

sys op X
sys op Y

sys op Z
sys op J

sys op K
sys op A

sys op B
sys op C

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Fig. 9. First implementation cycles defined.

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

1 2 3

sys op X
sys op Y
sys op Z

sys op J
sys op K

sys op A
sys op B
sys op C

sys op X
sys op Y

sys op Z
sys op J

sys op K
sys op A

sys op B
sys op C

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Theme 4Theme 3Theme 2Getting Started—Theme 1

12 System Operations

6 WeeksFour 2-Week Cycles = 8 Weeks

16 System Operations

8 Weeks

20 System Operations

10 Weeks

Fig. 10. Completed implementation plan.

Some of the criteria commonly used in setting priorities during this initial planning activity are the following:

� Features with greatest risk. The most common criterion used for prioritizing the development phase implementa-
tion cycles is risk. When adopting object technology, many teams are concerned that the system performance will

Article 3 August 1996 Hewlett-Packard Journal 12

not be adequate. Ease-of-use is another common risk for a project. The use scenarios that will provide the best
insight into areas of greatest risk should be scheduled for implementation as early as possible.

� Coordination with other teams. Most software development teams today have commitments to or are dependent
on other teams. For example, firmware development depends on some form of hardware development. Reusable
software platforms make a strong commitment to the products that are built on them. It may be necessary to adjust
the priority assigned to functionality to accommodate these dependencies and commitments.

� “Must have” versus “want” functionality. All product features are not created equal. Some features are considered
critical to the success of a project, while some features would simply be nice to have. Some development projects
must meet well-defined standards and may even have to pass certification tests of their functionality that are de-
fined by governing regulatory agencies. On these projects, it is often best to complete the required or “must have”
functionality before the value-added or “want” functionality. Those use scenarios that capture the required func-
tionality should be given higher priority than those that capture only desired functionality.

This same criterion can also apply to core or fundamental functionality that must be in place before additional functionality
can be implemented. It may be necessary to build up in a layered fashion the core functionality that all other functionality
will depend on. It is imperative that each cycle contributing to the core functionality be defined so that some validation or
feedback can be obtained.

� Most popular or most useful features first. If project risks are minor and if project commitments and dependencies
are insignificant, then prioritization of use scenarios can be based on value to the intended user. Those use scenar-
ios that are the most popular or will be of the most value to the user should be completed first.

� Infrastructure development: A significant amount of development environment infrastructure must be put in
place during the first few implementation cycles. The tools that will be used, such as the compiler, debugger, and
software asset configuration manager, as well as the processes that are adopted, can be developed in an evolution-
ary fashion in parallel with the functionality intended for the user. Some teams have found it valuable to make the
infrastructure tasks an explicit category in the plan for each implementation cycle.

Development Phase
With both the development phase plan and the detailed plans for the first few EVO cycles in place, the implementation
process can begin. Each EVO cycle consists of the same basic steps: refining the analysis models, developing the design
models, and writing and validating the code. The customer feedback process is executed in parallel with these tasks. The
deliverables from the previous EVO cycle are evaluated by selected users or their surrogates, and decisions are made that
shape the content of the subsequent EVO cycles.

Refining the Analysis Models. The EVO cycle begins with a review of the existing Fusion analysis models against the
functionality or system operations defined as deliverables for that cycle. For each cycle, new functionality may be defined
for delivery and existing functionality may be identified for modification.

The process for moving through the Fusion analysis models remains the same. Use scenarios that include the system
operations must be reviewed for changes that were the result of feedback and refinement from previous EVO cycles. The
object model must be reviewed for similar changes. Additional detail may be required in the object model. The system
operation descriptions are reviewed for any changes and to ensure a common understanding by all members of the team.

The technical lead is a key player during the refinement of the analysis models. Because they represent the overall
architecture for the system, any extensions or enhancements of the models must be made without serious compromise to the
integrity of the architecture. If compromises must be made, they should be logged as defects against the architecture and
considered for possible repair in a later EVO cycle.

Design Models. Based on the clear understanding of the deliverables for the cycle generated by the review and refinement of
the analysis models, the Fusion design models can be created or updated. Object interaction graphs will determine the new
classes that will be needed or the new methods that will be added to existing classes. The Fusion design models determine
what coding must be done for the cycle.

Coding and Validation. In addition to the code that must be generated to implement the design models, any tests needed to
validate this work in later cycles must also be completed. Many teams make use of test harnesses to validate their code
during the early cycles of development. These test harnesses are software modules or subsystems that can exercise the
method interfaces of other software subsystems. They are particularly useful during the early cycles of development when
major portions of the architecture have not been implemented. They also provide great value in later EVO cycles as tools for
focused and automated regression testing.

Customer Feedback. The customer feedback loop operates simultaneously with the implementation tasks. Beginning with the
second cycle and continuing throughout the development phase, some group of users or surrogate users will be validating
the product that the team has completed so far. The feedback that they provide must be evaluated against the value
proposition of the project for appropriate decision making. It is important that the project manager, technical lead, and user
liaison allocate enough time during each cycle to review plans, processes, and architectural documents to assess the impact
of each decision.

Article 3 August 1996 Hewlett-Packard Journal 13

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

Use
Scenario

1 2 3

Major Cycle 3Major Cycle 2Major Cycle 1

sys op W
sys op X
sys op Y
sys op Z

sys op J
sys op K
sys op L
sys op M

sys op A
sys op B
sys op C
sys op D

sys op Y sys op Z
sys op C
sys op D

Integrate
with Team 2

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

sys op W
sys op X

Integrate
with Team 1

sys op A
sys op Bsys op M

sys op K
sys op Lsys op J

Team 1

Team 2

Fig. 11. Hierarchical EVO Cycles.

System Test Using Use Scenarios. Although the use scenarios can be helpful in conducting unit and integration testing for each
implementation cycle, they can provide the greatest value during system test. Since the use scenarios are not structured
along architectural or subsystem boundaries, they tend to provide a broad level of system testing that generates paths of
execution through the entire system. They may be augmented to generate boundary and stress-test conditions, and they can
also serve as a basis for creating user-level documentation.

Scaling up for Large Projects
In the use of Evolutionary Fusion with large projects, and especially with those that include multiple development teams
that may not even be collocated, there are a number of additional issues to consider. It may not be appropriate to integrate
the deliverables from all project teams every EVO cycle. It is useful to define a higher-level set of EVO cycles and to
integrate all work together at the end of those cycles. To manage these multiple levels of EVO cycles, as well as the broad
set of technologies that may be involved, it is also useful to employ multiple technical leads, or architects.

Hierarchical EVO Cycles. As the size of a project team grows, a larger and larger portion of the standard EVO cycle is
dedicated to integrating the work of the many project team members. To keep the standard EVO cycle as small and as
efficient as possible and to let project teams progress in parallel, it is necessary to introduce hierarchical EVO cycles. These
hierarchical cycles are essentially a formalized version of the chunks of functionality or groupings of use scenarios
introduced earlier, under “Grouping and Prioritizing Functionality.”

The four or five major chunks or groupings that the use scenarios are initially broken into become the highest-level EVO
cycles. As before, the use scenarios for the first chunk or EVO cycle are sequenced and the system operations allocated
between multiple teams (Fig. 11). For large teams, it is also useful to add an integration EVO cycle at the end of each major
EVO cycle.

Each team is expected to define its own user feedback and validation process for its minor EVO cycles. There will also be a
feedback and validation process for each major EVO cycle of the system.

Role of Architects. Since it is difficult to define subsets of functionality that are completely independent of one another, it is
important to have an identified individual or group of individuals to manage the dependencies throughout each major EVO
cycle. This role is best played by the technical leads of each team, the architects. The architects play a key role in allocating
system operations among the various teams during each planning phase, and they are best positioned to resolve any
technical issues that emerge as a result of the parallel implementation approach. For large projects within Hewlett-Packard,
weekly meetings or conference calls are typical for the architect teams.

Conclusion
Much of Hewlett-Packard’s success is attributable to the fact that it is a diverse company composed of many independent
organizations. However, relatively few software development best practices have achieved widespread adoption in this
environment of autonomy and diversity. Fusion appears to be an exception to this rule. Fusion’s appeal is largely a result of
the respect that its creators have for software development teams. Fusion does not attempt to address every possible
nuance of software development with complex notations and model variations. It does provide a reasonably simple,
complete set of models that supports a team through most of the development process, acknowledging that software

Article 3 August 1996 Hewlett-Packard Journal 14

engineers are highly educated and talented professionals and that they are best suited to adapt a method to meet their
unique project needs and working styles.

Evolutionary Development has been positioned here as a life cycle for software development, but it really has much broader
application to any complex system. Fusion, the method, is changing to better meet user needs using an evolutionary
approach. Based on user feedback, we merged Evolutionary Development with Fusion as the deliverable from one
evolutionary cycle. There have been a number of other changes to the method, as well as to the method of delivery, again all
based on user feedback. As our experience with Fusion grows, so will the method. It is our hope that the Fusion user
community will continue to share experiences and to evolve the method in a direction that is both respectful and useful to
all software development teams. See the sidebar: Fusion in the Real World for a brief synopsis of the book.

Acknowledgments
It is impossible to thank all those that have contributed in some way to the material covered in this paper, but I must try.
First, I would like to thank the many Hewlett-Packard development teams that I have had the privilege to work with. Their
unwavering dedication to creating innovative products and to adopting innovative ways of working make Hewlett-Packard a
very successful company and an extremely rewarding place to work. Next, I would like to thank my colleagues of the
Software Initiative who have worked with me to make Fusion and object technology as easy to learn, adopt, and adapt as
possible. I would like to offer a very special thanks to the reviewers of this material, Ruth Malan, Reed Letsinger, Elaine
May, and Tom Gilb. Their wealth of knowledge and experience generated insights and suggestions that have added
significantly to the clarity and presentation of this material. And finally, to Derek Coleman and his team, for providing us all
with the very powerful and useful set of models and notation that we call fusion.

References
1. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes, Object-Oriented Development: The Fusion

Method, Prentice Hall, 1994.
2. B. Boehm, “A Spiral Model of Software Development and Enhancement,” ACM SIGSOFT Software Engineering Notes,

Vol. 11, no. 4, 1986.
3. J. Rumbaugh, J. “OMT: The Development Process,” Journal of Object-Oriented Programming, May 1995.
4. G. Booch, “The Macro Process of Object-Oriented Software Development,” Report on Object Analysis and Design, Vol. 1, no. 4,

1994, pp. 11-13.
5. Software Development and Documentation, MIL-STD-498, December, 1994.
6. T. Gilb, Principles of Software Engineering Management,

Addison-Wesley, 1988.
7. E. May and B. Zimmer, Evolutionary Product Development at Hewlett-Packard, Hewlett-Packard internal publication, 1994.
8. G. A. Moore, Crossing the Chasm: Marketing and Selling Technology Products to Mainstream Customers, Harper Business,

1991.
9. M. Ould, Strategies for Software Engineering—The Management of Risk and Quality, Wiley, 1990.

10. R. Crough and R. Walstra, Structured Common Sense: A Design Approach for Front-End Software Development, Hewlett-
Packard internal publication, 1993.

11. E. May and T. Cotton, Evolutionary Planning Workshop, Hewlett-Packard internal publication.

http://www.hp.com/hpj/aug96/augart4.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/aug96/augart3b.pdf

Sidebar to Article 3 August 1996 Hewlett-Packard Journal 1

What is Fusion?

Fusion is a systematic software development method for object-oriented software development. Developed at Hewlett-Packard
Laboratories in Bristol, England, the method integrates and extends the best features of earlier object-oriented methods. Fusion is a
full-coverage method, providing a direct route from a requirements definition through analysis and design to a programming language
implementation.

What Fusion Offers
� It provides a process for software development. It divides this process into phases and says what should be done in

each phase. It gives guidance on the order in which things should be done within phases so that the developer knows
how to make progress. It provides criteria that tell the developer when to move on to the next phase.

� It provides a comprehensive, simple, well-defined notation for all of its models. Because this notation is based on
existing practices, it is easy to learn.

� It provides management tools for software development. The outputs of the different phases are clearly identified, and
there are cross-checks to ensure consistency within and between phases. Each phase has its own techniques and
addresses different aspects of translating a requirements document into executable code.

� It is adaptable. A lightweight version can be used in projects that cannot afford the effort required to use the full version,
or parts of the process or notation can be used within other development processes to address their weak points.

The Process
The Fusion method structures the development process into analysis, design, and implementation phases (see Fig. 1).

Fig. 1. The Fusion process.

Visibility
Graphs

Object
Interaction

Graphs

Design

Implementation Program

Analysis Object
Model

Requirements
Document

Class
Descriptions

Hierarchical
Decomposition

Data
Dictionary

Inheritance
Graphs

Interface Model

Scenarios

Operation
Model

Analysis
During the analysis phase the analyst defines the intended behavior of the system. Models of the system are produced, which describe:
� The classes of objects that exist in the system
� The relationships between those classes

Sidebar to Article 3 August 1996 Hewlett-Packard Journal 2

� The operations that can be performed on the system
� The allowable sequences of those operations.

Design
The designer chooses how the system operations are to be implemented by the run-time behavior of interacting objects. Different ways
of breaking an operation into interactions can be tried. During this process, operations are attached to classes. The designer also
chooses how objects refer to each other and what the appropriate inheritance relationships are between classes.

The design phase delivers models that show:
� How operations on the system are implemented by interacting objects
� How classes refer one to another and how they are related by inheritance
� The attributes of and operations on classes.

Designers may need to investigate the substructure of some classes and their operations in more detail. They do so by applying the
analysis and design techniques to those classes, regarding them as a subsystem.

Implementation
The implementer must turn the design into code in a particular programming language. Fusion gives guidance on how this is done in the
following ways:
� Inheritance, reference, and class attributes are implemented in programming-language classes.
� Object interactions are encoded as methods belonging to a selected class.
� The permitted sequences of operations are recognized by state machines.

Fusion also maintains a data dictionary, a place where the different entities of the system can be named and described. The data
dictionary is referenced throughout the development process.

In summary, Fusion is a complete, yet lightweight development method that can be tailored to meet the different needs of software
projects.

Derek Coleman
Professor of Computer Science

University of London

http://www.hp.com/hpj/aug96/augart4.htm
http://www.hp.com/hpj/aug96/augart3.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Sidebar to Article 3 August 1996 Hewlett-Packard Journal 1

Fusion in the Real World

The use of Fusion has spread rapidly since its introduction in 1993. Today, it is the most widely used object-oriented analysis and design
method in Hewlett-Packard. Many other companies worldwide are also employing the method on a wide variety of applications and
products.

Fusion is a living method that is being extended and evolved based on lessons learned in the real world. Todd Cotton’s work on
Evolutionary Fusion, described in the accompanying article, is an exemplary illustration of how Fusion benefits from the collaboration of a
broad community of users, consultants, and researchers. The book listed in reference 1 was created to provide a forum for articulating
and disseminating such contributions to the method. It does this by collecting together reports from the field that describe the practical
lessons that have been learned from projects using Fusion. Todd Cotton and other contributors combine their expertise to give the most
comprehensive look yet at how Fusion is changing the world of object-oriented development. Throughout the book the emphasis is on
practicality and lessons learned. The main themes of the book include:
� An introductory overview of Fusion together with full reference documentation
� Detailed experience reports of industrial projects discussing how to introduce Fusion to a project and how to succeed

using it
� An account of how to reduce risk by integrating Fusion into an evolutionary life cyle
� A report on metrics and defect tracking in a Fusion project
� Lessons learned from a wide variety of applications and backgrounds, including product development organizations,

research laboratories, academia, software houses, and consultancies.

Ruth Malan
Software Engineer

Hewlett-Packard Laboratories

Reed P. Letsinger
Project Manager

Hewlett-Packard Laboratories

Reference
1. R. Malan, R. Letsinger, and D. Coleman, Editors, Object-Oriented Development at Work: Fusion in the Real World, Prentice Hall/HP Press, 1996.

http://www.hp.com/hpj/aug96/augart3.htm
http://www.hp.com/hpj/aug96/augart4.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Article 4 August 1996 Hewlett-Packard Journal 1

The Evolutionary Development Model for

Software

The traditional waterfall life cycle has been the mainstay for
software developers for many years. For software products that do
not change very much once they are specified, the waterfall model
is still viable. However, for software products that have their
feature sets redefined during development because of user
feedback and other factors, the traditional waterfall model is no
longer appropriate.

by Elaine L. May and Barbara A. Zimmer

Hewlett-Packard, like other organizations developing software products, is always looking for ways to improve its software
development processes. One software development method that has become quite popular at HP is called Evolutionary

Development, or EVO (see reference 1 and Article 3). EVO uses small, incremental product releases, frequent delivery to
users, and dynamic plans and processes. Although EVO is relatively simple in concept, its implementation at HP has
included both significant challenges and notable benefits. This paper begins with a brief discussion about the EVO method
and its benefits, then describes software projects at three HP divisions that have used EVO, and finally discusses critical
success factors and key lessons about EVO.

The EVO Method
Fig. 1 shows the difference between the traditional waterfall life cycle and the EVO life cycle. The EVO development model
divides the development cycle into smaller, incremental waterfall models in which users are able to get access to the
product at the end of each cycle. The users provide feedback on the product for the planning stage of the next cycle and the
development team responds, often by changing the product, plans, or process. These incremental cycles are typically two to
four weeks in duration and continue until the product is shipped.

Plan

Design Plan Cycle 1 Cycle 2 Cycle 3 Cycle N Test

Design Implement Test

Investigate Design Implement Test

(a)

(b)
User

FeedbackProduct

Investigate

Fig. 1. Software development life cycles. (a) Traditional waterfall model. (b) Evolutionary (EVO) development model.

Repeated for
Each Cycle

At Hewlett-Packard, we have found that it is possible to relax some of our original ideas regarding EVO. In particular, it isn’t
absolutely necessary to deliver the product to external customers with customer-ready documentation, training, and
support to benefit from EVO.

Benefits of EVO
Successful use of EVO can benefit not only business results but marketing and internal operations as well. From a business
perspective, the biggest benefit of EVO is a significant reduction in risk for software projects. This risk might be associated
with any of the many ways a software project can go awry, including missing scheduled deadlines, unusable products, wrong
feature sets, or poor quality. By breaking the project into smaller, more manageable pieces and by increasing the visibility of
the management team in the project, these risks can be addressed and managed.

http://www.hp.com/hpj/aug96/augart3.htm

Article 4 August 1996 Hewlett-Packard Journal 2

Because some design issues are cheaper to resolve through experimentation than through analysis, EVO can reduce costs
by providing a structured, disciplined avenue for experimentation. Finally, the inevitable change in expectations when users
begin using the software system is addressed by EVO’s early and ongoing involvement of the user in the development
process. This can result in a product that better fits user needs and market requirements.

EVO allows the marketing department access to early deliveries, facilitating development of documentation and
demonstrations. Although this access must be given judiciously, in some markets it is absolutely necessary to start the sales
cycle well before product release. The ability of developers to respond to market changes is increased in EVO because the
software is continuously evolving and the development team is thus better positioned to change a feature set or release it
earlier.

Short, frequent EVO cycles have some distinct advantages for internal processes and people considerations. First, continuous
process improvement becomes a more realistic possibility with one-to-four-week cycles. Second, the opportunity to show
their work to customers and hear customer responses tends to increase the motivation of software developers and
consequently encourages a more customer-focused orientation. In traditional software projects, that customer-response
payoff may only come every few years and may be so filtered by marketing and management that it is meaningless. Fig. 2
illustrates the difference between the traditional life cycle and EVO in terms of how much user feedback can be expected
during product development.

Amount
of User

Feedback

Investigate Design Implement Test

Investigate Design TestCycle 1 Cycle 2...Cycle n

Amount
of User

Feedback

(a)

(b)

Fig. 2. Amount of user feedback during (a) the traditional waterfall development process and (b) the evolutionary

development process (EVO).

Finally, the cooperation and flexibility required by EVO of each developer results in greater teamwork. Since scheduling and
dependency analysis are more rigorous, less dead time is spent waiting on other people to complete their work.

While the benefits can be substantial, implementation of evolutionary development can hold significant challenges.
It requires a fundamental shift in the way one thinks about managing projects and definitely requires more management
effort than traditional software development methods. The next section examines how EVO was applied in three different
HP divisions and what we learned from the experience.

Evolutionary Development in Practice

Some form of EVO has been used in at least eight Hewlett-Packard divisions in over ten major projects. Much of this has
been done drawing on expertise from HP’s Corporate Engineering software initiative, which is a central service group of
consultants in software engineering and management (see Sidebar). The software initiative group is currently leveraging
existing experience and promoting the use of EVO at HP.

The three divisions described below are in three entirely different businesses. While all the product names used in this
paper are fictitious, the case descriptions are real.

First Attempts
The first project was undertaken at HP’s Manufacturing Test Division. The project (called project A here) consumed the
time of four software developers for a year and a half and eventually was made up of over 120,000 lines of C and C++ code.
Over 30 versions were produced during the eleven-month implementation phase which occurred in one- and two-week
delivery cycles (see Fig. 3). The primary goals in using EVO were to reduce the number of late changes to the user interface
and to reduce the number of defects found during system testing.

Project A adapted Gilb’s EVO methods.1 One departure was the use of surrogate users. The Manufacturing Test Division
produces testers that are used in manufacturing environments. If the tester goes down, the manufacturer cannot ship
products. Beta sites, even when customers agree to them, are carefully isolated from production use, so the beta software is
rarely, if ever, exercised. Fortunately, the project had access to a group of surrogate users: application engineers in
marketing and test engineers in their own manufacturing department. The use of surrogates did not appear to have any
negative impact.

http://www.hp.com/hpj/aug96/augart4a.pdf

Article 4 August 1996 Hewlett-Packard Journal 3

Wednesday

• System Test and Release Version N
• Decide What to Do for Version N+1
• Design Version N+1

• Use Version N and
Give Feedback• Develop Code

• Develop Code

• Complete Code

• Test and Build Version N+1
• Analyze Feedback From Version N

and Decide What to Do Next

Meet to Discuss Action Taken Regarding
Feedback From Version N–1

Tuesday

Monday

Thursday

Friday

Development Team Users

Fig. 3. An example of a typical one-week EVO cycle at the Manufacturing Test Division during project A.

About two thirds of the way through the project, the rigorous testing and defect fixing that had been done during the EVO
cycles was discontinued because of schedule pressures. The cost of this decision was quality. With all efforts focused on
finishing, developers began adding code at a rate double that of previous months, and over half of the critical and serious
defects were introduced into the code in the last third of the project schedule.

Even though EVO was not used to complete the project, the product was successful and the team attributed several positive
results to having used the EVO method for the majority of the project. First, EVO contributed to creating better teamwork
with users and more time to think of alternative solutions. Second, the project still had significantly fewer critical and
serious defects during system testing. Third, the team was surprised to see an increase in productivity (measured in KNCSS
per engineer-month). The project manager attributes this higher productivity primarily to increased focus on project goals.

Despite having abandoned the EVO method in project A, many in the division felt that because of the benefits derived from
the method, they should give it another try. Project B, the second project to use the EVO method, involved creating custom
hardware with a team of three project managers and 20 engineers. The project required significant changes to over 1.5 million
lines of code. One project manager coordinated the efforts of three development teams.

The primary reason for using EVO for this project was to demonstrate the feasibility of the product’s new test technique
through the use of beta sites. Internal users were used early in the cycle and external customers became involved with later
versions. This decision resulted in actually selling systems to beta-site customers. Further, the traditionally long startup time
for the division’s sales cycle was shortened significantly by the use of EVO and validation of the product by users (see Fig.
4). This created a major business impact since it typically takes nine to fifteen months before the market believes a product
of this type can live up to its claims. Even more time passes before customers will actually buy the product. Because EVO
encourages early exposure of a product to users, sales started even before the product shipped!

Plan Cycle 1 Cycle 2 Cycle N Test

Test

Sales Cycle

Sales Cycle

Implement

$

$

$ = Book First Order of New Product Manufacturing
Release

(a)

(b)

Cycle N–1

Fig. 4. An accelerated sales cycle in (a) the traditional waterfall life cycle and (b) the EVO cycle.

Article 4 August 1996 Hewlett-Packard Journal 4

Start Small
The experience of HP’s Personal Software Division with EVO also began with some startup problems, followed by
remarkable success. The first project to use EVO was chosen because it was felt that EVO would help to prioritize new
features, respond quickly to customer needs, and, because of EVO’s many release cycles, enable the release of the software
product at any time in response to competition.

The six to eight project managers and approximately 60 engineers on this project were all new to the EVO method. The plan
was to do a complete release, including customerready documentation and support, every month. Unfortunately, the first
release consisted of paper prototypes and the users were not able to provide good feedback. The second release used real
code, took six weeks rather than the four weeks scheduled, and EVO was generally thought not to be worth the integration
and logistical effort. For this reason, the division decided to abandon EVO.

Although EVO had a bad reputation at the division after the first project, in a smaller follow-on project, one project manager
and eight engineers decided to try their own variation of EVO, calling it “phased development.” During the first one-month
phase, the development team worked from static visual designs to code a prototype. In focus group meetings, the team
discussed users’ needs and the potential features of the product and then showed a demonstration of its prototype. The
excellent feedback from these focus groups had a large impact on the quality of the product.

After the second cycle of focus groups, the feature set was frozen and the product definition complete. Implementation
consisted of four-to-six-week cycles, with software delivered for beta use at the end of each cycle. The entire release took 10
months from definition to manufacturing release. Implementation lasted 4.5 months. The result was a world-class product
that has won many awards and has been easy to support.

The success of phased development for this second product led to the use of a similar process in the second release. The
project manager concluded that the phased development process was the best approach for projects with an aggressive,
user-driven schedule. Team experience and confidence were definite contributing factors to the product’s success, and a
compelling product vision proved to be absolutely necessary.

Several potential issues arose during the project. EVO can add overhead, particularly in small one- or two-person
components. This is mainly because of the need for rapid context switching between various activities. Another potential
problem is the amount of time consumed by evaluation. The team is investigating how to make evaluation feedback more
timely. A third issue is the need to schedule enough time for front-end activities like design and inspections. Scheduling
longer evaluation cycles at the beginning of a new release could accommodate this, as could setting aside intermediate
cycles for design, inspections, and code cleanup.

The project postmortem listed a number of benefits from using EVO. The team particularly liked seeing the results of their
work often. Other benefits included:

� Long-term vision broken into short-term steps

� Prioritized implementation within component teams

� Cross-functional, empowered component teams (decision making pushed down to the project engineers)

� Early results—good communication tool inside and outside the division

� External customer feedback

� Six-week planning at the system level

� Excellent for incremental improvements to existing products

� Early realism about how much can be done.

A New Platform
The last project described in this article involved one project manager and eight engineers from HP’s Microwave Instrument
Division. It was a firmware project to build a platform for developing new products.

Since a reusable platform design was a new way of working for the division, the EVO method was expected to get more
visibility (via frequent delivery dates) for construction of the prototype. The platform team expected to get good feedback
from the teams developing the follow-on projects. The project manager had strong reservations about using EVO and about
being able to produce a verifiable slice of the platform architecture in six weeks. The project manager decided to give EVO
a try even if it seemed that it would take ten weeks to complete the feasibility demonstration work. The team completed the
bulk of the feasibility work six weeks into the project and finished it all by the ninth week.

Some engineers initially struggled with breaking their work down into two-week chunks. Eventually, they not only learned
to do it but saw some real value in doing it, such as getting better estimates so they could meet their commitments and
handle coordination and linkages with the rest of the team.

The team members also benefited from using EVO to develop their software development environment. Because of the
improved infrastructure, the project team was able to train new engineers quickly on the new platform development
paradigm. The project manager reported much greater insight into the progress of the team and felt better able to manage
the project. EVO helped to uncover key issues early and focus attention on the right things. One-third of the way through the

Article 4 August 1996 Hewlett-Packard Journal 5

project, the team was able to verify and meet their first performance goals. Traditionally, this didn’t happen until at least
halfway through a project.

Unfortunately, after completing more than half of the planned cycles, the project was cancelled because of a shift in the
division’s short-term R&D strategy. The lab currently plans to use EVO in two new projects.

Critical Success Factors

Based on accumulated HP experience in evolutionary development, including the three division experiences described
above, we have compiled a list of critical success factors. Since not every project is suited for evolutionary development, the
following success factors provide some indicators for deciding if a project is a good candidate for EVO.

Clear Vision
Perhaps the most critical success factor in using EVO is having a clear and compelling vision of the product. The perceived
vision or value of the product is the reason why someone would buy a given product rather than another, or buy no product
at all. Whether adding incremental functionality to an existing product or developing major new components or
functionality, the project team needs to understand and accept this vision.

This vision will help guide prioritizing and decision making and will make it easier for users and developers to understand
why some changes are approved and others are not. The project manager at the Personal Software Division noted that the
lack of clear focus for the second version of the product made the project much more difficult to manage than the first
release. A clear vision is critical to convergence on a releasable product.

Project Planning
Three factors need special consideration in planning EVO projects. First, managing an evolutionary development project
requires substantially more effort than managing a traditional waterfall development project. The contents of each delivery
should be planned so that no developer goes more than two releases without input to a release. The goal is to get everyone
on the project team developing incrementally. Although it is difficult and time-consuming, the work breakdown structure
and dependency information must be done and done correctly.

In addition to more management effort, EVO also requires a fundamental shift in how we think about software development.
Traditionally, the first third of a project is spent getting the infrastructure in place before developing any customer-visible
capability. This is a problem for an EVO project because EVO requires earlier development of customer-visible functionality
to elicit customer response. Delaying customer interaction with a product until the second third of the project is
incompatible with this objective.

The solution typically lies in finding some existing code to leverage. Although there is almost always resistance to using this
approach, it is usually possible to find something to leverage. If this is not possible, then think about implementing the
infrastructure in an evolutionary manner. In any case, the first delivery should be released in no more than two EVO cycles
(see Fig. 1) from the start of implementation. The first reason for this is that many of the concerns developers have with
evolutionary development are best addressed by doing EVO. Second, if the start of EVO deliveries is delayed too long, the
risk that delivery will never happen (until manufacturing release) is increased.

The final planning recommendation is to create a standard development plan that can be used for each cycle. Having the
same activities occur at the same time within each cycle helps team members get organized and makes process
improvement easier. The activities of three groups should be planned: developers, users, and the group who will make
decisions about user feedback. Keeping the cycles short helps keep the developers motivated to make changes in response
to customer feedback.

Fill Key Organizational Roles
The unique needs of EVO projects require two additional key project roles to be filled: technical manager and user liaison.
Because of the extra management burden imposed by EVO, it is useful to have one of the engineers act as a technical
manager. This person is responsible for developing the EVO plan (with the project manager) and keeping track of the
progress of the group. The technical manager is key to moving the project forward, resolving daily tactical issues, and
handling most coordination activities, with the management team as backup. Typically, technical managers also have
development responsibilities, so they tend to understand the dependencies between tasks and can relate more freely to the
other engineers.

The other key position, user liaison, trains users, collects their feedback, and communicates changes in the status of the
project. The user liaison is the single point of contact for all the users and developers. This person should be the first one to
use each delivery to see what has changed and if there are any problems in the code. The liaison’s job is to make it easy for
users to be involved in the project. A strong user advocate in this role can also contribute to management decisions. Without
this role, communication between the developers and users can be haphazard, inefficient, and a major energy drain.

Article 4 August 1996 Hewlett-Packard Journal 6

Manage the Developers
Although evolutionary development may seem intuitively obvious, implementing it in a traditional software life cycle
environment should not be undertaken lightly. Much of the challenge has to do with managing people. The following steps
have also contributed to success at HP:

� Establish a credible business reason for using EVO

� Discuss the method and the rationale for using EVO with the development team

� Ask for feedback

� Develop an initial plan that addresses as many concerns as possible

� Ask the development team to try EVO for a couple of releases and then evaluate future use.

Two major concerns arise in managing developers. The first is a concern that the development effort will degenerate into
hacking. To prevent this, the software architecture must be well-partitioned and loosely enough coupled to enable easy
modification. This is why object-oriented programming techniques are particularly well-suited to evolutionary development.
In addition, one or more persons must be assigned to maintain architectural integrity, and if substantial redesign is required,
time must be scheduled. This should be a major consideration in determining if a project is appropriate for EVO methods.

A second concern is that it will be too difficult to make so many releases. If it is difficult to make one release every 9 to 18
months, how much more difficult will it be to release every two weeks? The answer is that when you make frequent
releases, you get better at it (if this is not the case, EVO becomes too inefficient). Further, the small chunks in each cycle
keep things to a manageable size.

Be aware of a few potential problems that could make managing developers difficult in the implementation phase if not
addressed properly. First, users tend to focus on what they don’t like, not what they do like. To keep this from being
discouraging for the developers, it might help to provide a standard feedback form that elicits “Things I liked” followed by
“Things I didn’t like.” Because many more project management decisions need to be made in EVO, handling decisions can
also become a problem. If the decisions are not timely or cause dissension, progress can be delayed. Participatory
decision-making techniques have been one solution at HP. Finally, developer overwork or burnout is a potential hazard.
Most developers overestimate the amount of software they can write in one or two weeks. While working long hours may
seem attractive for a short period, it will ultimately be destructive.

Select and Manage Users
Evolutionary development requires users to exercise each delivery. Many potential users have been alienated in the past by
the inability of developers to respond to their feedback in a timely manner. Additionally, users are usually being asked to do
a task above and beyond their regular jobs. Consequently, the selection, care, and treatment of the user base is a key issue
for an EVO project manager.

The source of the user base is the first issue to address. External customers (through field organizations), internal
customers, marketing or field people, and temporary workers have all been used successfully to test products. The closer the
project team gets to external customers, the more accurate the feedback tends to be, but the more difficult the
customer-relations situation becomes. Several projects satisfactorily used internal surrogate users for early releases and
then shifted to external customers.

The user group should have a mix of customers that are representative of the target market. The group must be big enough
so that one person doesn’t skew the results, yet not so big that managing users overwhelms the project team. Among the
user expectations that need to be set are:

� Time commitments to use the product and give feedback

� The possibility of critical problems with the software

� The possibility that the software may or may not change substantially during the project

� Prohibition against discussing the software with anyone outside the project.

If the user is an external customer, the field organization must also be comfortable with their involvement.

In addition to setting expectations correctly, keeping users satisfied during the development process is the other main
challenge of managing users. An obvious way to keep users happy is to give them code that works reasonably well. If the
code keeps failing, they will get frustrated and tend to stop using it. A second key to customer satisfaction is to take their
comments seriously and let them know what changes resulted from their feedback. If a suggestion can’t be implemented,
explain why to them or, better yet, have one or more of the users involved in the decision-making process. Finally,
streamline the software distribution and feedback collection process. Find out what mechanisms customers like to use for
installing the software and providing feedback. Then accommodate those desires as much as possible.

Shift Management Focus
Traditional software project management focuses 95% of the team effort on shipping code. With EVO, it is important to
focus attention equally on all three components of the process, as shown in Table I.

Article 4 August 1996 Hewlett-Packard Journal 7

Table I
Management Focus during Traditional and EVO Life Cycles

Activities Traditional EVO

Shipping Code 95% 33%

Getting Feedback 2.5% 33%

Making Decisions 2.5% 33%

Because of the need to radically shift the focus of all involved, getting feedback and making decisions in the early part of the
project should be emphasized. Putting a lot of structure around those two activities by doing such things as scheduling
regular meetings to review feedback and make decisions will help ensure that they get done. These two activities are
prerequisite to getting real value from EVO.

Manage Builds
To do evolutionary development, a project team must have the ability to construct the product frequently. If the product will
be released every two weeks, developers should be able to do a minimum of one build per week, and preferably a build
every other night. The engineers must be able to integrate their work and test it, or they can’t release it. Code that is checked
into the configuration management system must be clean, and the build process itself must run in 48 hours or less.
Identifying a build engineer or integrator can help the process.

Focus on Key Objectives
While there are many reasons to use evolutionary development on a project, focusing on one or two critical benefits will
help optimize efforts. These goals will guide later decisions such as how to structure user involvement, how to change plans
in response to user feedback, and how to organize the project. Regardless of what goals are focused on, it is critical to
communicate the reasons for strategic decisions to both management and the development team.

Evolutionary development is a different way of thinking about managing software projects. Most groups will probably
experience some of the pain that usually accompanies change, so start with a small pilot project first and then try a larger
project.

Conclusion
The evolutionary development methodology has become a significant asset for Hewlett-Packard software developers. Its
most salient, consistent benefits have been the ability to get early, accurate, well-formed feedback from users and the ability
to respond to that feedback. Additional advantages have come from the ability to:

� Better fit the product to user needs and market requirements

� Manage project risk with definition of early cycle content

� Uncover key issues early and focus attention appropriately

� Increase the opportunity to hit market windows

� Accelerate sales cycles with early customer exposure

� Increase management visibility of project progress

� Increase product team productivity and motivation.

The EVO method consists of a few essential steps: early and frequent iteration, breaking work into small release chunks,
planning short cycle times, and getting ongoing user feedback. Other components can be modified to accommodate the
needs of specific projects, products, or environments. Examples where situation judgments are appropriate include selection
of users and length of cycles.

Additional activities, like establishing a clear product vision, identifying a technical manager and user liaison, creating a
standard development plan, and setting correct user expectations, will help optimize the benefits of using EVO.
The challenges in using EVO successfully are mostly, but not exclusively, human resource issues. These include the shift in
thinking about a new project structure paradigm and perceptions that EVO requires more planning, more tasks to track,
more decisions to make, more cross-functional acceptance and coordination, and more difficulty coordinating software and
firmware development with hardware.

As noted earlier, many of these perceptions are valid but have extremely advantageous cost-benefit trade-offs. Since many
software developers are no longer primary users of their products, they now need to be able to understand the primary
users’ needs, skill levels, and motivations. Finally, major changes in the customer-developer relationship can result in
customer demand for more input and involvement in product definition and design.

Article 4 August 1996 Hewlett-Packard Journal 8

HP is continuously improving the EVO process, building on our experience at different divisions. The software initiative
team now offers a workshop and consulting expertise on the EVO method. Experience with the value of using EVO to
develop the infrastructure and the need for management focus have framed recent implementation efforts.

The key lessons to remember when first attempting EVO are to start small, keep good records, and be diligent about doing
the essentials.

Acknowledgments
The authors would like to thank Mike Teska at Manufacturing Test Division for his support of software development method
improvement, the board consultant development team consisting of Sharon LaTourrette, John McDermid, Bob Illick, Kathy
Withers-Miklos, and Charles Zeng, and the users of the board consultant EVO releases, especially Kent Dinkel. We’d also like
to thank Todd Cotton and Beatrice Lam for discussing with us their EVO experiences on some HP projects, and Tony
Dicolen and other members of his team at the Microwave Instrument Division for sharing their EVO experiences with us.
Finally, we’d like to thank the other development teams within HP that have shared their EVO experiences with us and the
software initiative management for sponsoring this work.

Reference
1. T. Gilb, Principles of Software Engineering Management, Addison Wesley Publishing Company, 1988.

http://www.hp.com/hpj/aug96/augart5.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Sidebar to Article 4 August 1996 Hewlett-Packard Journal 1

The Software Initiative Program

HP’s Corporate Engineering software initiative (SWI) is a major corporate effort to make software development a core competence at
HP. Drawing on the expertise of its members in software engineering, management, and business methods, the SWI partners with
product development organizations, delivering knowledge and expertise in key software competence areas to get more products to
market faster, with lower costs and higher quality.

SWI’s mission is to foster sustainable breakthroughs in product generation capabilities for HP’s business goals as related to software
and solutions. To achieve this, SWI consultants’ work is driven by customer-directed outcomes. In practice, determining what these
outcomes are is often in itself a significant contribution to the customer organization and is the first step in any SWI engagement. The
SWI team works with multiple levels of group and division management to understand the entity business goals and explore ways of
gaining competitive advantage. These goals, along with challenges or obstacles that need to be considered, drive the creation of
specific improvement plans.

SWI’s value is in its ability to accelerate software development and reduce the risk of having to make fundamental changes to existing
software development and management practices. SWI is currently partnering with product development organizations in all of
HP’s business sectors. This includes significant efforts focused on software reuse, platform development, and testing.

http://www.hp.com/hpj/aug96/augart4.pdf
http://www.hp.com/hpj/aug96/augart5.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Article 5 August 1996 Hewlett-Packard Journal 1

HP Domain Analysis: Producing Useful

Models for Reusable Software

Early software reuse efforts focused on libraries of
general-purpose routines or functions. These fine-grained assets
did not produce the hoped-for quality and productivity
improvements. Recent software reuse efforts have shown that
architecture-based, domain-specific reuse can yield greater
quality and productivity improvements.

by Patricia Collins Cornwell

A software domain is a set of systems or applications that share some common functionality. This common functionality is
typically embodied in various software components.* Domain analysis is a software engineering process that produces a
characterization of a software domain to support the reuse of the software components. The HP domain analysis method
produces a set of models that guide the design of reusable software.

While a few papers and books have been published on aspects of domain analysis,1,2,3,4,5 very little has been published on
practical domain analysis methods. HP has developed and refined a practical domain analysis method which has been used
in several reuse projects. The method has proven to be an effective and efficient way to get the information needed for the
design of domain-specific software. The focus of each domain analysis is guided by the business priorities and anticipated
uses of the domain models.

This article describes a reuse process framework and the essential activities, deliverables, and typical uses of the results
from the HP domain analysis method. Because the HP domain analysis method is designed to be tailored to the strategies of
HP’s business organizations, sections of this article will describe the business contexts for reuse strategies and special reuse
roles in the organization.

Reuse Process Framework
Early reuse efforts focused on libraries of general-purpose routines or functions. These small-grained assets did not produce
the productivity and quality improvements hoped for because so much engineering effort had to go into integrating these
assets to produce a useful product. More recent efforts have shown that architecture-based, domain-specific reuse with
larger assets can provide significant productivity and quality improvements. For the past five years, practical engineering
experience in adapting reuse to meet HP’s business needs has confirmed that the biggest return on investment comes from
reuse that is based on domain-specific components that work in a flexible, but well-defined architecture. Reuse-oriented
engineering addresses how these software assets are produced, supported, and used.

Because each organization has its own variations on processes and often quite distinct choices of specific methods, the U.S.
Department of Defense’s Software Technology for Adaptable, Reliable Systems (STARS) program sponsored a project to
develop a conceptual framework for reuse processes.3 This conceptual framework helps organizations understand the
relationships among their software asset production, support, and utilization processes. HP participated heavily in the
definition of the reuse process framework and provided some of the earliest experiences in its application. The usefulness
of this reuse process was validated with organizations adopting reuse-oriented software engineering practices. This article’s
discussion of major reuse processes blends the knowledge gained from the STARS Conceptual Framework for Reuse
Processes (CFRP)6 with subsequent experience in reuse adoption at HP.

Fig. 1 shows the fundamental relationships among the reuse engineering processes: produce assets, support assets, and
utilize assets. All three processes are guided by the results of one or more domain analyses performed in the Analyze
Domain process, which analyzes and models a domain for architecture-based, domain-specific reuse efforts. Essential
assets of software reuse-oriented engineering include a domain architecture and reusable software components.** Domain
analysis produces domain models and other domain information used by the other three reuse-oriented engineering
processes. The domain models and information are valuable assets, capturing the organization’s knowledge about its
product line capabilities and how those capabilities can work together in a range of competitive products.

* A complete software component includes both object code and all related information needed to use it. This related information includes parameteriza-
tion information, source code if not proprietary, test information, design information, evaluation results, and other descriptive information.

** Some reusable software assets include software generators rather than components that are based on reusable code.

Article 5 August 1996 Hewlett-Packard Journal 2

Analyze
Domain

Produce
Assets

Support
Assets

Utilize
Assets

New
Products

Product Requirements

Domain
Models and
Information

Business Objectives
and Priorities

Supported
Assets

Reusable
Assets

Support
Requests

Asset Requirements

Domain
Analyst

Expert Knowledge,
Product Plans, and

Documentation

Producer

Supporter

Utilizer

Fig. 1. The domain analysis software engineering process.

Fig. 2 shows a conceptual model for a data analysis domain, and Fig. 3 shows a physical environment model for a device
measurement domain.

Event
Management

User
Interface

System
Management

Event
Searching

Data
Gathering

Data
Storage/
Retrieval

Identify
Event Type

Event
Analysis

= Domain of Focus

Configure Sys-
tem for Next
Analysis

Poll for
Events

Notify
of Event

Request
Analysis

Identify
Event

Trigger Data
Collection

Store Gathered
Data

Store or Recall
Setups

Set up,
Return
Results

Fig. 2. Conceptual model for a data analysis domain.

Domain analysis is an essential part of any reuse effort. However, the domain analysis methods being used in industry range
from an informal and quick expert prediction of what the domain should cover to a highly structured, exhaustive analysis
and modeling effort with hundreds of pages of documentation. For different business situations, either of these extremes or
more moderate alternatives may be appropriate. Across software engineering businesses, it is not possible to define one
domain analysis method that meets all needs. In fact, even the higher-level descriptions of an overall reuse process may
differ significantly from organization to organization. Rather than defining a domain analysis method that would work in
only one business context, the HP domain analysis method is adaptable to a wide range of businesses that generate
products that include software or firmware.

Article 5 August 1996 Hewlett-Packard Journal 3

Input/Output
Cards

Input/Output
CardRemote Control

and Data Sharing

Card Cage

Instruments

Custom Hardware

Filters

Configuration
Control

Sources

Device

Customer’s Enterprise
Computing Environment

PC or
UNIX

Fig. 3. Physical environment model for a device measurement domain.

RS-232

Industry-
Standard
Interface

The Produce Assets process shown in Fig. 1 uses domain models to develop reusable assets for use in portfolios of products
within the domain. The Support Assets process includes managing the collection of assets and assisting the users in
understanding how to take best advantage of the assets. Asset support also includes serving as a users’ advocate with
producers, integrating the needs of many user groups and assessing the relative benefits of producing or reengineering
particular assets. The Utilize Assets process constructs new products with supported assets.

Business Contexts for Reuse Strategies
The first step in any domain analysis is to understand the business priorities and constraints where reuse is going to be
used. There are numerous business circumstances that demand an improvement in the way software is developed and
maintained. Reuse-oriented software engineering is often used to address business pressures for reducing product cycle
time, increasing product quality, escalating the rate of introduction of new product features, and improving employee job
satisfaction. However, software reuse is not always an appropriate way to accomplish business goals. Like so many
software engineering methods, software reuse has become the goal for some organizations, rather than a means to
accomplishing an organization’s business goals. To ensure that reuse serves the business needs, we recommend that the
management of a reuse effort begin by explicitly identifying the business priorities and analyzing what kind of reuse strategy
(if any) will best support achieving those priorities.

Some organizations have launched reuse initiatives only to find that their products do not lend themselves to productive,
cost-effective use of the software assets they develop. The two aspects of business context that most influence the decision
to employ a reuse approach are the business goals and the product portfolio characteristics.

Businesses need to be more productive than ever to be competitive. Software reuse is rarely a short-term solution for
meeting these increased productivity pressures. However, with a managed investment in adopting reuse, the benefits can be
measured within the first few uses of the software assets.

Product Cycle Time. In many commercial businesses, the strongest competitors are those who dramatically reduce the time
between introduction of a product and the introduction of its successor. To determine the potential impact of software
reuse in meeting shortened time-to-market goals, we first assess whether software engineering (development and quality
assurance) has critical path activities for the overall product development and release process. Managers who are being
encouraged to reduce product cycle time need to focus on engineering activities that produce more and do it faster, possibly
with a smaller team. They cannot afford to make organizational or process changes to noncritical path efforts if those
changes won’t substantially improve the product cycle time. Adopting software reuse involves an up-front investment in
new skills and, often, in additional engineering effort. Therefore, investing in software reuse is appropriate when there is a
predictable long-term benefit from the up-front investment, and the short-term costs of the investment are tolerable.

Product Quality. To determine the potential impact of software reuse in meeting product quality goals, we first assess how
much of a product’s quality is determined by the software or firmware. Software reuse is valuable in improving product
quality when a significant amount of the functionality is consistent from product to product, so that as that software is tested
and in use, more defects are found and fixed. For HP products, the question is often not so much of ensuring the highest

Article 5 August 1996 Hewlett-Packard Journal 4

quality (which is a must) as it is of providing that quality with less testing time. Nevertheless, as the reusable software
“ages” and fewer defects are found in successive uses, customers tend to experience higher quality in the products.

Rate of Innovation. Many businesses make ongoing trade-offs between the rate of introduction of new products and the
number of innovations that are new to each successive product. The rate of innovation in products can be increased when
the product is based on a stable software platform. A reusable software or firmware platform provides that base
functionality without the effort to design and implement the same functionality for each product, freeing the product team
to focus on innovations for each new product.

Employee Job Satisfaction. Improved employee job satisfaction has become a very important business goal in some
organizations, especially those where intense pressures for meeting deadlines have resulted in employee burnout. We have
worked with organizations where the move to reuse was motivated as much by the desire to provide a better work
environment for sustainable employee job satisfaction and work-life balance as it was to meet marketplace pressures. For
an organization that already has the market share it needs and has a competitive product line, the goal may be to release
those future products with a team that is energized by the software engineering effort rather than exhausted by it.

Note that software reuse often makes it imperative for an organization to adopt architecture, design, implementation, and
quality practices that would be a significant benefit to their software engineering projects even if reuse were not
accomplished. Many software engineers welcome the move to software engineering methods that make them more
productive, which contributes to their job satisfaction.

Product Portfolio Characteristics. An increasing number of HP divisions have business plans for a portfolio of products. The
products may be tailored to address different market segments, from personal uses to enterprise uses, or tailored to meet
specific industry needs, like automotive or banking businesses. We can look at this portfolio as a snapshot-in-time of the set
of products a business wants to deliver. In addition, the product portfolio must be managed over time, with the introduction
of additional features in successive versions of products. The business’s vintage chart anticipates the desired product
evolution and provides essential information for assessing the potential for reuse.

The characteristics of a product portfolio that can improve the prospects for software reuse rely mostly on the stability of
the feature set in the product portfolio. There must be some significant set of base functionality that the set of products
have in common to make it profitable to invest in reuse. This common functionality may constitute as little as 10% of a
product’s software and still be worth implementing with reuse in mind.

To reduce the risk of adopting reuse (any change involves risk, as does no change), those chartered with producing the
reusable software rely on access to experts in the kinds of functionality for the products that will be produced. These
people are often referred to as domain experts. These experts must be made available to the domain analysis effort as part
of management support for the reuse strategy.

We use a rule of thumb in which the asset designers must get access to at least three existing examples of products that
have the kind of functionality they want to provide in a reusable form. They also need characterizations of at least three
intended future products that would also have that kind of functionality. The three examples give concrete information
about what functionality is common (an existence proof). The three projected uses suggest that the investment will be
amortized adequately to realize the benefits of designing, developing, and maintaining the software assets. The future uses
also suggest the range of variation the assets must support.

HP Domain Analysis
The HP domain analysis method was developed by HP’s software initiative (see Sidebar in Article 4). The HP domain
analysis method supports analysis and modeling of capabilities (functionality or services) provided by domains such as
microwave frequency measurement modules, crosscorrelation analysis algorithms, or report generation routines. The
method explicitly addresses gathering the constraints and requirements of producers, supporters, and anticipated users of
the domain analysis and related assets. A reuse strategy for software engineering is most successful when producers,
supporters, and utilizers are full, active contributors to the domain analyses they will later use. The roles of the producers,
supporters, and utilizers are described in the sidebar “Reuse Roles”.

The Analyze Domain process shown in Fig. 1 produces a kind of reusable asset in the HP domain analysis method and is,
therefore, conceptually a kind of Produce Assets process. Nevertheless, Fig. 1 shows the Analyze Domain process
separately to emphasize that HP domain analysis guides and is guided by all three fundamental reuse engineering processes.

Basics of HP Domain Analysis
The HP domain analysis method includes domain analysis and modeling. The analysis identifies capabilities of systems in a
domain of focus (i.e., the set of systems being analyzed), and classifies the common capabilities and the range of variation
across systems that are anticipated in the future. The modeling captures the relationships among critical capabilities in the
domain and creates models of the capabilities and their relationships without imposing a particular implementation
solution.

In HP domain analysis, the term “domain” refers to any set of implementations (systems or subsystems, for example) in
which the implementations have some common capabilities. Most of the time we define the domain by the set of common

http://www.hp.com/hpj/aug96/augart4a.pdf
http://www.hp.com/hpj/aug96/augart5a.pdf

Article 5 August 1996 Hewlett-Packard Journal 5

Establish
Domain Analysis

Objectives

Gather
Information,

Analyze Domain

Model
Domain

Validate
Models

Validated
Domain
Models

Business
Objectives

• Domain-of-Focus
Statement

• Conceptual Model
• Analyzed Domain

Information

• Capabilities Model
• Environment Model
• End-User Characterization
• Utilizer Requirements
• Reusability Requirements

Domain Analysis Objectives

Domain
Lexicon

Domain Information

Fig. 4. The activities and deliverables that make up the domain analysis process.

• Domain-of-
Focus
Statement

• Conceptual
Model

• Domain
Lexicon

capabilities, rather than by listing all the potential implementations that could fall in the domain. For example, for a domain
like a microwave measurement test system, there are endless possible products. However, most implementations of
microwave measurement test systems include capabilities like test management, data management, report generation, signal
measurement, and so on.

There are no common rules about what makes a set of capabilities the right size and complexity to be called a domain. If the
domain of focus represents a consistent set of capabilities in a larger context (for example, in the context of a product
portfolio), the most useful scope for such a domain is one in which there is a high degree of cohesiveness among the
capabilities within the domain, and a limited coupling to other domains with which the domain of focus might be combined
to produce products. For example, a domain like a graphics editor has significant complexity within it. However, in a larger
context like document publishing, the graphics editor might have connections to other domains like text editing and
document printing, which have a well-defined and comparatively simple interface.

Intuitively, domain assets are much more likely to be reusable if they provide a coherent “chunk” of desired capabilities and if
the assets are easy to integrate into a complete solution. Typically, ease of integration is accomplished with a simple
interface between the assets and the rest of the product software or firmware.

The Method
The HP domain analysis method usually involves three cycles through a set of well-defined activities. Fig. 4 shows these
activities and the deliverables they produce, and Fig. 5 shows a typical level of effort expended on each deliverable during
each of the three cycles through the domain analysis process. At each step through these cycles the analysis and models are
refined and deepened and go through the same basic activities. The first cycle usually needs to focus on the context in
which the domain will function because the team is still analyzing just what part of the overall product portfolio the domain
must cover. The second and third cycles refine the scope of the domain and fill in details on domain capabilities and their
relationships.

The following sections describe the activities shown in Fig. 4 and the deliverables produced by each activity.

Establish Domain Analysis Objectives. Use business goals and constraints to produce a clear statement of the purpose for the
domain analysis. Identify those who have a stake in the domain analysis. Typically stakeholders include managers in the
product development organization, those who will design and implement the domain assets, those who will support those
assets, and those who are targeted to utilize the assets. Get agreement from these people on the objectives.

The deliverables from this activity include a statement of desired objectives for this domain analysis and a set of metrics that
will determine the progress and success of the analysis. The documentation will also show how the domain analysis
objectives are aligned with the business goals. Fig. 6 shows an example of some of the objectives and metrics for a domain
analysis project.

The value of this activity is that it ensures that the domain analysis meets business needs, enables the domain analysis team
to manage its investment of time and effort, and establishes a partnership with stakeholders to ensure that the domain
analysis results meet their needs.

Article 5 August 1996 Hewlett-Packard Journal 6

Domain-of-Focus
Statement

Megadomain
Context Models

Domain Conceptual
Model

Physical
Environments
Context Model

Users Model

Utilizers Model

Domain Capabilities
Models

Domain Lexicon

Cycle 1 Cycle 2 Cycle 3 Time

Effort

Fig. 5. The level of development effort expended during each cycle of the domain analysis process.

Objective: The domain analysis will assess the value of building products
based on reusable software, where that value is based on
potential competitive advantage.

Metrics: • Count the number of competitive capabilities in the domain
capability models.

• Name the clusters of capabilities that marketing identifies
as a competitive advantage.

Objective: Determine what software would be highly reusable as a
software platform in our products targeted for the years 1997
to 2001.

Metrics: • Does the domain context model clearly identify which parts
of the domain constitute the platform domain?

• Does the platform domain’s conceptual model capture the
capabilities needed for targeted products in the years 1997
to 2001? Are those capabilities highly similar across the
targeted products?

Fig. 6. An example of some of the objectives and metrics for a domain analysis project.

Develop a Domain Context Model. Identify examples of existing systems that include capabilities of the domain you have
identified. Use the list of targeted uses of the domain from the domain-of-focus statement to identify examples of future
systems that include the domain. Develop a top-level model of the major elements of the systems. This is called the
megadomain. Normally this model contains five to eight elements, with labeled relationships shown on the interconnections
between the elements. Fig. 2 shows a conceptual model of a megadomain. This model serves as the organization’s domain
context model, since the parts of the megadomain that are in the domain-of-focus statement can be highlighted and the
relationship to the overall megadomain can be identified.

This activity identifies a top-level interface between the domain and the rest of a system. The focus of the activity is in
identifying what parts of a system are within the domain. The domain boundary decision is refined over the three cycles of
the domain analysis.

Identify the Domain of Focus. Determine what domain will be the focus of the domain analysis and produce a domain-of-focus

statement. The domain-of-focus statement is a descriptive statement (about three to five pages long) of what characterizes
the domain, in terms of its anticipated uses and the scope of its capabilities. This statement complements the conceptual
model (described below) and provides a basis for shared understanding about the domain, without needing to understand

Article 5 August 1996 Hewlett-Packard Journal 7

the detailed relationships of elements in the domain. Because it describes the scope of the domain, it guides the more
detailed modeling efforts. Fig. 7 shows an excerpt from a domain-of-focus statement for a printer command handling
domain.

Domain of Focus Statement

The Rainbow domain [domain common name] is the system firmware that
supports the set of all color printing solutions products [targeted products]
anticipated in 1994 – 1997 (see Rainbow genealogy chart). [utilization time
frame] There are three classes of end users for the Rainbow domain: people
who send print jobs to the printer to obtain printouts, third-party application
developers of applications that have printing capabilities (i.e., applications that
interface to Rainbow-compatible printer drivers), and the person who detects
and reports problems with the printer behavior, typically a systems administra-
tor or product field service technician. [targeted end users]

The Rainbow domain supports people who send print jobs to the printer
through its ability to detect and report (to the application from which the print
request was made) any malfunctions and other status of the printer, to receive,
interpret, and dispatch print commands (also, from the application from which
the print request was made), and to control the actual printing, paper handling,
and front panel displays (if any). [externally observable capabilities]

Fig. 7. A portion of a domain-of-focus statement for a printer command handling domain.

Be sure the terminology used is documented in the domain lexicon (described below). As the description of the domain
evolves, be sure to keep the domain-of-focus statement consistent with the domain models, especially the conceptual
model. Fig. 8 shows a portion of the lexicon for an I/O bus project.

This activity provides a succinct statement of the essential characteristics of the domain for use with stakeholders. It also
serves as a reference for decisions about the scope of the domain.

Access Functions: Functions that read or write data within the domain data-
base.

Arbitration Block: A software component that monitors and controls arbitration
for a bus.

Arbitration: The act of controlling access to a shared bus.
.
.
.
Bus Driver: The component that controls a given set of signals on the bus.
Note that there is only one bus driver for a given set of signals.

Bus Signal: This term has two different meanings: hardware bus signal and
software bus signal. A hardware bus signal is a voltage on a wire that connects
architecture components together. A software bus signal is a variable that
models the hardware voltage on a wire.
.
.
.
I/O Bus: The set of signals needed for communication between I/O devices and
the processor bus.

I/O Controller: Hardware or HDL model that handles all I/O transfers from the
processor bus to the I/O bus.
.
.
.
Processor Bus: The set of signals needed for communication between
processors, I/O controllers, and memory.
.
.
.
Transaction: A series of events on a bus that accomplish a certain task.
A transaction transfers data, inquires about or change state, or provides the
system with information.

Fig. 8. An example of definitions that might appear in a domain lexicon.

Article 5 August 1996 Hewlett-Packard Journal 8

Gather Domain Information. Look at existing systems that include the domain. Also look at information on future products that
might be able to use reusable designs and implementations in the same domain. Interview domain experts for their
knowledge about trends in technology or capabilities associated with the domain. Identify the externally observable
capabilities of the domain.

This activity provides the technical information for analyzing and modeling the domain, and ensures that the domain
characterization is accurate and adequately complete.

Develop a Conceptual Model. Create a graphical depiction of the domain’s primary elements and their relationships. This
model may not be a technically accurate, top-level representation of the eventual design, but rather is an easy way to
understand the “big picture” of the domain. It complements the domain-of-focus statement. Often the domain-of-focus
statement and the conceptual model are used in management briefings and as part of the support documentation for
engineers who need a general understanding of the domain.

There is no need to be fancy with the conceptual model. In fact, an intuitive model is preferred. Arcs between elements of
the model must be labeled and the intended interpretation of the connections between those elements must be documented.
The conceptual model should use the terminology defined in the lexicon and must be consistent with the domain
description in the domain-of-focus statement. Usability of the conceptual model is enhanced by using a single modeling
paradigm such as process flow, data flow, or entity-relationship diagrams.

Define the Domain Lexicon. This is an ongoing activity in which terms used to discuss the domain are defined, with pointers to
related terms. The lexicon is used as a reference document for the terminology of choice for communicating about the
domain. The domain lexicon includes every term in the domain models. It is invaluable in saving time and minimizing
misunderstandings among the asset producers or between asset producers, supporters, and utilizers because it enables
them to interpret the domain models consistently. The domain lexicon also allows a new member of a team to study the
domain models and gain an initial understanding of the models without needing full-time assistance.

This effort will create a common understanding of concepts related to the domain, capture decisions about preferred
terminology, and support efficient learning about the domain.

Model Domain Capabilities. Develop a model or set of models that capture the relationships among externally observable
capabilities of the domain. This model is based on the gathered domain information, uses the terminology of the lexicon, and
is consistent with the domain-of-focus statement and the conceptual model. The capabilities model is the primary reference
used by the domain architect and asset designers. Thus, it must contain a characterization of all essential, externally
observable capabilities of the domain. Also, because the capabilities model is concerned with the externally observable
capabilities of the domain, it can be a valuable document for those needing to understand how to maintain or use the
domain.

Later, the architecture and designers (who are members of the producer team) will transform the capabilities model into a
chosen engineering solution. For organizations that have not done formal architecture and design, the capabilities model
may serve as the design, supplemented by the other domain models. As the organization’s skill in software design increases,
the capabilities model will be the primary source of information for guiding the more detailed and formal software design.
The domain analyst documents links between gathered domain information and decisions about capabilities and their
relationships.

The most practical approach to capabilities modeling is to use the same paradigm as will be used in the architecture and
design of the domain assets. Feature-based models, entity-relationship-attribute models, object-services models, and
logic-rules models can be employed. However, the domain models are not meant to reflect implementation decisions.
Furthermore, the capabilities models show only what is observable to utilizers and end users of the domain capabilities.

Most capabilities modeling requires a combination of aggregation, abstraction, and decomposition approaches to identify the
top two or three layers of externally observable capabilities. Since these layers may not be strictly hierarchical, the models
must capture the kinds of relationships that exist among the capabilities. Capability models identify each of the capabilities
as required, or optionally, identify sets of alternative capabilities and note other capability interdependencies.

The most practical way to capture the range of variation across intended uses of the domain is through use scenarios. One
very useful kind of model shows stimulus-response relationships among capabilities (i.e., what services or actions transpire
as a result of what events) for different scenarios.

Modeling the domain capabilities provides domain architects and asset designers with a characterization of the domain’s
externally observable capabilities in sufficient detail for architecture and external design needs.

Model Physical Environments. Characterize the physical environments in which the software for the domain needs to work.
This may mean describing the processors in an instrument where firmware runs, or the various heterogeneous enterprise
environments where application software will run. Also, if there are diverse interface standards to be met, those are
captured in this model. Fig. 3 shows an example of a simplified physical environment context model.

This activity ensures that asset designers have the information needed to accommodate computing environment constraints,
like parallel or distributed processing, and refines the scope of the intended use of the domain assets.

Article 5 August 1996 Hewlett-Packard Journal 9

Model End Users’ Needs. Capture the characteristics of the end users that could influence the design or the implementation of
domain assets. Each targeted development project may provide a characterization of their end users that includes skill level,
understanding of how the product works, expectations, and a mental model of the user interface. The models of end users
translate the end-users’ usability requirements into a model of the capabilities the domain provides to meet those
requirements.

This activity ensures end-user usability of domain assets and often influences the set of capabilities provided.

Model Utilizer Needs. Use identified utilizer needs for usability of the domain assets. This list usually includes the utilizer’s
constraints with respect to development environment (programming tools, version control and configuration management
expectations, etc.), usage support requirements, and skill level. This information may influence the reusability requirement
decisions and the domain architecture or asset design. The utilizer model translates the utilizer’s usability requirements into
a model of the capabilities the domain’s components provide to meet those requirements. This model is typically quite
different from the end-user model because it shows what will need to be provided in the product development phase, rather
than the functionality needed in the delivered product.

Reusability Requirements. Develop a clear statement of how the domain will interpret such reusability characteristics as
portability, modularity, scalability, extensibility, tailorability, interoperability, plug compatibility, and standards
conformance. This statement defines how the team will know when they have achieved adequate reusability in their
domain design and implementation.

Validate Models. Ensure consistency, completeness, and usability of the domain analysis and models. This activity is best
supported with regular and explicit quality assurance activities, like minireviews or checkoffs against objectives and
measures defined in establishing domain analysis objectives. This activity will ensure quality and provide an assessment of
when the domain analysis is adequately complete.

How Much
The knowledge captured during a domain analysis is essential for success in reuse. Therefore, domain analysis is not
overhead but rather a low-risk, efficient way of gathering and developing domain knowledge in forms that are readily
accessible to those in the organization who:

� Develop reusable software or firmware

� Develop products that use the reusable assets

� Support the assets.

The larger the domain, the more people are typically involved in the domain analysis. Nevertheless, planning for it to take
about six weeks of full-time effort from the start of the analysis and modeling until the stakeholders have what they need to
delve into architecture and asset design is reasonable. Normally, the stakeholders are the first people to use the domain
analysis results. For a team new to domain analysis, productivity will be greatly enhanced by having an experienced
domain analyst (even one from a very different domain) available to guide the team through the method.

As mentioned earlier, the HP domain analysis method has three cycles of well-defined activities. For a typical domain, the
first cycle generally takes about a week of focused effort for the domain analyst, who is leading the domain analysis effort,
plus 10 to 30 hours for each of the domain experts providing information and assisting in the analysis. The second cycle
takes about two weeks of information gathering, analysis, and modeling for the domain analyst and those who will be
involved in the design and implementation of the domain assets. The users are consulted during this cycle, but the time
commitment may only need to be a few hours for review and suggestions. The final cycle takes about three weeks for
refining and validating the analysis and models. The domain analyst is involved full time, while the domain architect and
domain asset designers may begin sketching out their first asset design ideas in parallel with the third domain analysis
cycle. This parallel approach can ensure that the refining and validating activities meet the designers’ needs. Domain
analysis typically ends as an explicit activity when the design team has the information it needs to develop or reengineer an
architecture and reusable software. However, it is important to maintain consistency between requirements, domain
models, domain architecture, and asset design.

Using HP Domain Analysis Results
The deliverables from an HP domain analysis are designed to be useful in other, specific reuse activities. In architecting the
domain and designing the reusable assets (Produce Assets in Fig. 1), all of the deliverables are used. The capability models
and domain characterizations are primarily targeted to be used to guide these activities.

In supporting asset utilization, the lexicon is indispensable. The conceptual model and domain-of-focus statement are
especially useful in acquainting developers with the domain assets (a form of asset support). The capability models and
domain characterizations provide useful details for the utilizer, who is trying to understand how the assets might best
provide the capabilities needed in the product (another form of asset support). The lexicon and capability model also
support asset management through library classification, asset access, and configuration management.

In using assets, the utilizer will likely reference most of the domain analysis deliverables, initially relying on the conceptual
model and domain-of-focus statement. Part of using assets is taking the initiative to identify asset requirements to the

Article 5 August 1996 Hewlett-Packard Journal 10

producers, who will translate requirements requests into refinements of the impacted deliverables. For example, the need
for a new capability is reflected in the capability models and lexicon.

Generally, managers rely most heavily on the conceptual model and domain-of-focus statement, with the lexicon as
background material. See the sidebar: ”Management”.

Conclusion
The HP domain analysis method provides a simple and effective way of getting information needed to be successful in
domain-specific, architecture-based reuse. By providing a method with a clear set of deliverables that have well-defined uses,
we improve the efficiency and effectiveness of the domain analysis. Following the HP domain analysis method can
substantially reduce the risks in reuse-oriented software engineering, risks that arise when the assets produced and
supported do not adequately meet utilizers’ or end-users’ needs.

In most cases, we find the best results are obtained working with an experienced domain analyst the first time a team goes
through the cycles to do their first domain analysis. Over time, that team’s experience in domain analysis can increase to a
level of domain analysis expertise that can be spread throughout the organization.

Acknowledgments
The HP domain analysis method was initially captured as a domain analysis workbook. Its primary author was Mark Simos
of Organon Motives, who was a consultant to HP’s software initiative program. Modifications to the workbook and the
underlying process model were influenced by the work of Ruben Prieto-Diaz and Guillermo Arango.4,5 A completely new
workbook was developed after the modified workbook was used with HP product development teams in the computer
peripherals, computer systems, medical, and test and measurement businesses. Mike Ogush and Tom Van Slack from the
software initiative program have provided valuable suggestions for making the method match the needs of HP software
development organizations.

References
1. J. W. Hooper and R. O. Chester, Software Reuse: Guidelines and Methods, Plenum Press, New York,1991, pp. 51-66.
2. Symposium on Software Reusability, ACM SIGSOFT, Seattle, Washington, April 28-30, 1995.
3. T. J. Biggerstaff and A. J. Perlis, Software Reusability, Vols. 1 and 2, ACM Press, New York, 1989.
4. G, Arango, “Domain Analysis : From Art Form to Engineering Discipline,” Proceedings of the Fifth International Workshop on

Software Specifications and Design, 1989, pp. 152-159.
5. R. Prieto-Diaz, “Domain Analysis of Reusability,” IEEE Proceedings of COMPSAC ’87, 1987, pp. 23-29.
6. STARS Conceptual Framework for Reuse Processes (CFRP), Volume I: Definition, STARS-VC-A018/001/00, September 30,

1993, and STARS Conceptual Framework for Reuse Processes (CFRP), Volume II: Application, STARS-VC-A018/002/00, Septem-
ber 30, 1993.

http://www.hp.com/hpj/aug96/augart5b.pdf
http://www.hp.com/hpj/journal.html
http://www.hp.com/hpj/aug96/augart6.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm

Sidebar to Article 5 August 1996 Hewlett-Packard Journal 1

Reuse Roles: Producers, Supporters, and

Utilizers

In the early stages of moving to reuse-oriented product development, software engineers take on the roles of being responsible for
developing their software to be reusable (producers), learning how to use software developed by others (utilizers), and supporting their
software for use by others (supporters). As reuse becomes more systematic, it is common for organizations to evolve so that
individuals take on the specific roles of producer, supporter, or utilizer for the duration of a product development cycle.

Fig. 1 shows the primary relationships among software engineering roles in a reuse-oriented organization, and the following sections
describe the responsibilities for each of the roles.

Fig. 1. Relationships among the software engineering roles in a reuse-oriented organization.

Producers

Supporters

Domain Analyst
and Domain Models

• Utilizer’s Needs
• Product Capabilities

and Requirements

Reusable
Assets

Utilizers

• Asset Requests
• Supporters’ Needs

and Requirements

• Use Consulting
• Configuration

Management

Support
Requests

Utilizers
Products

Domain Analyst
� Analyze the common feature set and the range of feature variation across the projected uses of the assets.
� Characterize capabilities the domain must provide to support the users of products built with domain assets by the

product developers. Capture the characterization in models that can be used to design and develop domain assets and
guide the use of those assets.

� Produce conceptual models that are readily understandable by managers, new project managers, and engineers who will
produce, utilize, or support the domain assets.

� Extract domain information from diverse sources such as past designs, interviews with experts, product data sheets, and
trade press articles.

� Use consistent, unambiguous terminology captured in the domain
lexicon to communicate about the domain.

� Develop and maintain a working partnership with producers, supporters, utilizers, managers, and key technical
contributors.

Producers
� Include utilizers’ requirements and needs as part of the design. Consider the utilizers’ assessment of product

requirements and what it takes for them to be able to tailor and integrate the assets easily to build products.
� Include supporters’ requirements and needs as part of the design. Consider the supporters’ ability to maintain the assets,

to manage the asset base’s evolution, and to provide assistance to utilizers.
� Develop an architecture for the product portfolio that clearly defines the common elements and the range of variation

across the uses of those elements. Design the architecture’s evolution to meet delivery requirements.
� Design the assets to support critical abilities like portability, supportability, extensibility, scalability, and tailorability and

to meet functionality and performance requirements.
� Develop and maintain a working partnership with the domain analysts, supporters, and utilizers, including managers and

key technical contributors.

Supporters
� Develop and maintain a configuration management process and environment that support the producers and the various

teams of utilizers, as well as making it easy to configure and distribute releases.
� Provide asset use consulting to utilizers.

Sidebar to Article 5 August 1996 Hewlett-Packard Journal 2

� Join with producers throughout the producers’ development effort to ensure that the assets will be easy to understand,
maintain, and port.

� Contribute to the prioritization of asset development and support plans and consider the overall business priorities and
needs.

� Develop and maintain a working partnership with domain analysts, producers, utilizers, managers, and key technical
contributors.

Utilizer
� Use the architecture and available software assets to guide every

phase of the product development life cycle. This includes everything from determining product requirements to quality
assurance.

� Design the product to take advantage of new combinations of features that could provide a market advantage.
� Join with producers throughout the producer’s development effort to influence their design and implementation of assets

so that they will meet the utilizer’s product needs.
� Join with the domain analyst to influence the scope of the domain and the domain utilizer’s model.
� Contribute to the prioritization of asset development and support

plans, considering overall business priorities and needs.
� Develop and maintain working partnerships with domain analysts, producers, supporters, managers, and key technical

contributors.

http://www.hp.com/hpj/aug96/augart5.pdf
http://www.hp.com/hpj/aug96/augart6.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Sidebar to Article 5 August 1996 Hewlett-Packard Journal 1

Management

Successful reuse depends on a different kind of relationship among engineering teams. The teams behave as true partners, each
concerned for and respectful of the legitimate needs and constraints of the other. Because this partnership is so critical to successful
reuse, managers whose responsibilities span the producer and utilizer organizations need to understand the issues involved, support the
reuse effort with computing and training resources, allow time for regular communication and joint decision-making by producers and
utilizers, and acknowledge the value of the reuse investment.

This is no easy task when the next product’s release is in danger of slipping and the return on the reuse investment will not be felt until
products after the current product are in development. Nevertheless, without informed senior management involvement and support,
producer and utilizer organizations find it difficult to behave as true partners, and typically fall back into the old ways of engineering
software, which are the very ways they had decided to abandon because they would not meet future business needs.

In one HP organization, a lab manager endorsed a pilot reuse project for reengineering existing software into a more easily reused
software platform. The lab manager’s responsibilities spanned the platform engineering team and numerous product development
teams that would use the platform. The lab manager’s leadership and active involvement in understanding the issues, providing
resources, and rewarding reusable results transformed the way software and firmware components for an entire product line were
produced. The transformation did not take place overnight. However, the business is now producing four to six products per year
rather than the one per year that it was producing four years ago when the reuse effort began. This has been accomplished with a
modest increase in staffing and a great deal of software and firmware reuse or leverage.

In another business sector, a group of businesses agreed to cooperate on the development of a reusable software platform that could
be used in numerous product lines. The senior management (R&D group managers) invested in the project and encouraged the
individual businesses to invest senior technical contributors in the asset production effort. These senior technical contributors served
as producers in the early months of the reuse effort. However, they were also responsible for representing the needs of their individual
organizations as potential utilizers of the software platform. As a serendipitous result, the resulting platform was used to bootstrap a
new business that had many of the same product capabilities that had been analyzed and designed into the reusable software, allowing
HP to get to market substantially faster with a highly competitive product.

Unfortunately, there are also examples where talented engineers have developed solid technical solutions for reuse, but were unable to
engage their targeted utilizers or were unable to get senior management involvement and active support. Eventually, each of these
investments was abandoned with a return to the short-term product development methods that were not meeting business needs when
the reuse effort began. There is a very strong correlation between engaging producers, utilizers, and managers and succeeding with
reuse.

http://www.hp.com/hpj/aug96/augart5.pdf
http://www.hp.com/hpj/aug96/augart6.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Article 6 August 1996 Hewlett-Packard Journal 1

A Model for Platform Development

For many software and firmware products today, creating the
entire architecture and design and all the software modules from
the ground up is no longer feasible, especially from the point of
view of product quality, ease of implementation, and short product
development schedules. Therefore, the trend is to create new
product versions by intentionally reusing the architecture, design,
and code from an established software platform.

by Emil Jandourek

HP’s software initiative program has been working in partnership with product development organizations in
Hewlett-Packard for almost five years. Its goal is to help take software and firmware development off the critical path of
new product introductions and transform HP’s software and firmware development capability into a competitive advantage.
Through our work we have observed and participated in the application of many different strategies, all aimed at raising an
R&D team’s collective ability to build software and firmware that meets the overall market requirements, including
functionality, usability, reliability, performance, supportability, and time-to-market goals.

Several patterns have emerged that many HP organizations are successfully using to elevate their software and firmware
development capability. One pattern corresponds to a set of operational practices that we call the platform development

paradigm. The software initiative program has created a conceptual model for platform development (see Fig. 1) which
builds upon HP’s product development experience and integrates many of HP’s best practices in software development. The
individual elements of the model are closely tied to the technical and management systems used in the company and have
been validated through actual team experiences in developing new products.

Since the platform development model is conceptual, it is used as a framework for determining the elements that an
organization needs to invest in to attain a competency in platform development. The software initiative program works with
product development organizations to identify the areas of the model that are applicable to a given organization’s situation
and works with the organization to customize the model accordingly. The resulting instantiation of the model yields
processes tuned to the specific needs and requirements of the particular development organization, leading to a new level of
development capability. Organizations within HP that have established a competency in platform development have

Architectural Elements

Development Elements

Product Portfolio Planning

Support Model

Product
Development

V1

P1

Platform Management Elements

Platform
Development

Vi
Pi

= Platform Versions
= Products

Metrics and Measurement Processes Values and Reward System

Test
Architecture
and Strategy

Architectural
Definition and

Partitioning

Product Feature
Mapping

Organizational
Structure and

Work Partitioning

Partnership Model
and Contract

Management
Processes and
Steering Teams

Communication
and Feedback

Model

Development
Tools and

Infrastructure

Development Model
and Process

Platform and
Product Life Cycles Delivery Model

Validation and
Test Processes

P2

P3

V2

Fig. 1. Major elements of the platform development model.

Article 6 August 1996 Hewlett-Packard Journal 2

significantly reduced their time to market, improved operational efficiency, and become more responsive to the needs of
their customers. These gains are accompanied by improved business results.

The following are brief descriptions of the elements of the platform development model shown in Fig. 1.

� Product Portfolio Planning. This element defines the strategic relationship between the platform and all product
versions to be released over a multiyear period. It identifies the key business drivers and sets the overall goals,
direction, priorities, and parameters of the platform strategy.

� Architecture. This group of elements includes:

� Architectural definition and partitioning of the major functional and technology subsystems.
� Product feature mapping, which identifies appropriate subsystems and component modules used in the im-

plementation of each feature (i.e., translation of customer needs to product features to specific platform or
product modules)

� Test architecture and strategy, which define the overall structure and methods for verification and validation
to ensure necessary quality levels in the final product.

� Platform Management. This group of elements includes:

� Organizational structure and work partitioning, which defines the organization’s operating model at an ab-
stract level (e.g., reporting relationships and team organization)

� Partnership model and contract, which provides the generic framework for instantiating the operating
model between platform and product teams (e.g., interdependence between teams and expectations for
their working relationships)

� Management processes and steering teams, which define how the product portfolio plan is created and how
its execution is managed

� Communication and feedback model, which defines the timing and content of the information that flows
between teams.

� Development. This group of elements includes:

� Platform and product life cycles, which define the major phases, with goals, activities, and deliverables for
both the platform and products

� Development model and process, which specify the processes followed for the creation and enhancement of
a module through its integration into the final product

� Delivery model, which defines how platform components and subsystems are delivered for use within
products

� Validation and test processes, which define the specific quality criteria and test procedures used throughout
the product and platform life cycles

� Development tools and infrastructure, which provide a common development environment and processes
for platform and product work (e.g., procedures and tools for creating, storing, finding, building, and testing
components).

� Support Model. This element defines the mechanics and logistics of how individuals and teams get help when
using platform components.

� Metrics and Measurement Processes. This element defines the means by which progress and results for each of
the other elements are monitored to ensure achievement of business goals.

� Values and Reward System. This element integrates and aligns the organization’s values and culture with its perfor-
mance evaluation and reward mechanisms to support the other elements of the model and thereby achieve plat-
form, product, and business goals.

The remainder of this article describes the key elements of the model in greater detail, including the deployment and use of
the elements, anecdotes about their implementation, and finally, HP’s experiences with the model. The use of the word
“software” throughout this article refers to both software and firmware.

Definitions and Background
For HP and many other high-technology businesses, the evolution of product development organizations parallels that of a
company’s business. The character of a business changes as its products evolve, mature, and expand their market
penetration beyond the innovators and early adopters.

This technology adoption life cycle has implications for how an organization develops its products.1 An organization’s first
product for a new, emerging market is often an experiment aimed at validating a product concept and getting feedback to
help shape its evolution. Consequently, the first product is often incomplete and may in fact be a cleaned-up prototype.
Successful market introduction and subsequent demand for the product inevitably lead to plans for follow-on products.

Paradigm I: Serial Development Projects
Development during the early stage of a new product’s life cycle is characterized by a series of independent projects (see
Fig. 2). A “just build it” mentality often drives the first few products because of uncertainty about the market acceptance of
the product. From a software development perspective, the product’s architecture and design are often implicit and poorly

Article 6 August 1996 Hewlett-Packard Journal 3

S

S

S

I/L

I/L

I/L

M/R

M/R

M/R

P1

P2

P3

TTM
(= TBSP)

Investigation, Design, etc.

Code, Test, Integration, etc.
Same Team

=

=

Design Leverage

Every Project Is the First Project

Characteristics:
• Serial Development
• Project Independence
• “Just Build It” Philosophy
• Design Is Implicit
• Design Is not Necessarily Documented
• Lots of Leverage
• Same Team
• Little Structure, Low Overhead, and

Little Bureaucracy

Challenge:
• Make design explicit and do enough of

it to accelerate the schedule.

Pi
S
I/L
M/R
TTM
TBSP

= Different Products in the Same Product Line
= Start of Project
= Transition Checkpoint from Investigation to Development
= Manufacturing Release
= Time to Market
= Time Between Successive Products

Fig. 2. Paradigm I, serial development projects.

documented. Little structure and formality work reasonably well for small development teams as long as there is continuity
between the initial product team and the teams that develop subsequent products. In fact, very often the initial team and the
teams for follow-on products are the same. This continuity of individuals and teams enables both design and code leverage
between projects.

In paradigm I, the time to market (TTM) is defined as the time between the start or initial staffing of the project and its
release to customers. Organizational learning and leverage between any two successive projects can reduce the TTM for the
latter project. Thus, if a similar amount of functionality is contained in both projects one expects the TTM for project N�1
to be less than the TTM for project N. Ideally, the bulk of the effort invested in a latter project is directed at those
value-added, differentiating features that are visible to customers.

An organization can choose any number of different development methodologies or life cycles for its development effort.
Within HP, many organizations are adopting an evolutionary delivery approach as opposed to a waterfall model (see
Article 5, Article 3 and reference 2). In fact, even those using a waterfall model have modified it to support increased
concurrency and reduce the impact of a reset at any stage.

The time between successive products (TBSP) is calculated by subtracting the release date of the earlier product from that
of the later product. This measure is referred to as time to market prime (TTM′) by some organizations. In the case of serial
independent projects TBSP is equivalent to the TTM of the last product.

Paradigm II: Multiple Parallel Projects
When a business finds increased market acceptance of its products and has market penetration beyond the innovators and
early adopters, it is common for customers to demand follow-on products with shorter intervals between them. The
pressure to do faster product releases and thereby cut TBSP almost invariably results in a shift within the product
development organization to multiple independent projects. We call this paradigm II (see Fig. 3). This situation usually
results in different teams working in parallel to build closely related products.

In paradigm II, the TTM does not necessarily change, but the TBSP shrinks because of the overlap between projects.
Customer demands for frequent product releases and consistency within a product family put pressure on the product
development organization to achieve an appropriate level of consistency across products and shrink both TTM and TBSP.
The potential to reduce the TTM for follow-on products exists if there is a high degree of leverage from previous products.

http://www.hp.com/hpj/aug96/augart5.htm
http://www.hp.com/hpj/aug96/augart3.htm

Article 6 August 1996 Hewlett-Packard Journal 4

S

S

S

I/L

I/L

I/L

M/R

M/R

M/R

P1

P2

P3

Different Teams

Design Leverage or Reuse

Only One First Product per Portfolio (Customer View)

Characteristics:
• Parallel Development
• Project Independence
• Local Optimization
• Products Look Similar
• Design Is Probably not Explicit
• Different Teams, Some Leverage
• Architecture Benefits Accrue to

Follow-on Projects

Challenge:
• Make leverage or reuse of both design and code

happen predictably.

Pi
S
I/L
M/R
TTM
TBSP

= Different Products in the Same Product Line
= Start of Project
= Transition Checkpoint from Investigation to Development
= Manufacturing Release
= Time to Market
= Time Between Successive Products

M/RI/LS

TBSP

P1

Code Leverage or Reuse

�

�

= Architecture

Fig. 3. Paradigm II, multiple parallel projects.

TTM

Since leverage fundamentally looks into the past for existing assets to draw upon, there is no guarantee that the software
found will not require require extensive modifications to work for the new product. Thus, the benefit of leverage is subject
to an inherent limitation and in the worst case may be negative (i.e., when the cost of leverage exceeds that of a new
implementation).

A much greater reduction in TTM can be achieved if extensive reuse is possible. Reuse fundamentally looks to the future
and orients development around what follow-on products will require. Since reusable software components are designed
with the future in mind, they can be plugged into new products without any modifications. This is known as black-box reuse
because the component user’s primary concern is with the external behavior and interfaces and not with the internal details
of the component. The practices of leverage and reuse form two ends of a continuum in terms of benefit to recipient project
teams. In general, the benefits for project teams that reuse components are greater than those that leverage components.
However, components that are not specifically designed for reuse typically need to be modified and hence end up being
leveraged. There are significant differences in the development processes used to build reusable components.

The challenge for organizations doing multiple independent but related projects in parallel is to make the practices of
leverage and reuse happen predictably across projects. These practices can happen at multiple levels, from the sharing of
architecture and high-level designs to object code and test vectors. The larger the granularity of work shared, the greater the
impact on reducing project TTM. For example, reusing a complete error-handling subsystem will reduce project effort more
than reusing just a few selected error handling routines.

In paradigm II, individual teams usually have dedicated project managers and architects for each product. This
configuration provides each team with a large degree of independence and autonomy. At the same time it can also make it
difficult to coordinate the sharing of work between teams. Many organizations find that their predominant mode of
operation closely follows paradigm II. For businesses with different product lines there may be several sets of independent
projects underway at any given time.

Paradigm III: Platform Development
Businesses that have firmly established a presence for their products in the marketplace, have moved beyond the early
adopters, and have achieved a deep customer and product understanding may consider moving to platform development,
paradigm III (see Fig. 4). Platform development is essentially an extension of paradigm II, where the common elements
within a product family are factored out and developed once. The essence of paradigm III is to pull out those product
elements, features, and subsystems that are stable and well-understood, and that provide a basis for value-added,
differentiating features.

Article 6 August 1996 Hewlett-Packard Journal 5

S

S

S

I/L

I/L

I/L

Release

M/R

M/R

V1

P1

P2

Platform Generates a Series of Products

Characteristics:
• Lots of Parallel Development
• Producer/Consumer Model (Interproject

Dependencies, Global Trade-offs)
• Separation of Platform Efforts from

Product Efforts
• Support and Evolution of Platform
• Architecture and Design Must Be Explicit

(Common Artifacts, Clear Hand-offs)

Challenge:
• Manage the Complexity
• Manage the Timing and Resources

Pi
Vi
S
I/L
M/R
TTM
TBSP

= Different Products in the Same Product Line
= Platform Version
= Start of Project
= Transition Checkpoint from Investigation to Development
= Manufacturing Release
= Time to Market
= Time Between Successive Products

M/RI/L

= Architecture

P3

S I/L M/R
= Product Level Design

TBSP

V2

Coupling

Platform
Development

Product
Development

Fig. 4. Paradigm III, platform development.

TTM

A platform is different from a reuse library in that it has a cohesive, underlying architecture. The exact composition of the
platform for any given product family can range from a complete product framework to a collection of subsystems to sets of
individual components. The platform’s contribution to individual products can vary from 10% to nearly 90%, either in terms
of code or development effort. The exact amount and form of the contribution depend on the specific needs of each product
family. Products developed using the features and pervasive structures (e.g., error handling and GUI standards) resident
within the platform have a much shorter TTM.

The shift to platform development takes the effort an organization normally puts into product basics and reduces it through
reuse. Although new functionality and features can be provided by either platform or product software, in cases involving a
large degree of uncertainty new features are usually implemented as part of the product. Once the new product
functionality stabilizes and is accepted by the marketplace, it can be migrated into the platform. Thus, it becomes available
to subsequent product development efforts.

The net result of implementing paradigm III is a reduction in the TTM for individual projects. This reduction coupled with
the parallel development inherent in paradigm II allows organizations to shrink their TBSP. This also enables better market
responsiveness, and not surprisingly, in mature businesses a whole series of platforms may be developed to support
different product families.

Examples
The following two examples serve to illustrate the power of platform development. In the consumer electronics world, Sony
Electronics Inc. is a large producer of handheld portable, radio and cassette players. In fact, Sony makes over twenty
different Walkman stereo radio and cassette players that it sells in the United States. Close examination of these products
reveals that only a few underlying cassette mechanisms and cases are used for the entire product family. These mechanisms
and packaging constitute Sony’s platforms, and they enable Sony to generate an assortment of products targeted at a broad
spectrum of customer needs extremely rapidly. The incremental investment needed for Sony to bring out a new model is
small because of the large amount of reuse offered through its platforms. There are numerous other examples like this in the
consumer electronics markets.

Within the computer networking market, HP offers a product called HP OpenView, a software product used for managing
complex networks. In HP OpenView’s case, parts of the software form a platform that HP’s customers use to build network
management applications. In addition to offering HP OpenView to other network management vendors, HP also markets its
own suite of HP OpenView-based network management applications. The HP division responsible for OpenView produces
additional network management applications in under half the time required for a grounds-up implementation. This
represents a TTM reduction of over 50%. Third parties working with HP OpenView also experience similar levels of effort

Article 6 August 1996 Hewlett-Packard Journal 6

and time savings. Unlike HP OpenView, which is sold and used external to HP, most development labs are producing and
using platforms internally to provide the foundation for individual product lines.

Changing an organization’s development paradigm to platform development is nontrivial and requires a significant
investment. Richer, more robust, and more competitive products along with TTM reductions of one third to one half are not
uncommon. Coupling the use of a platform with doing multiple products in parallel results in significant reductions in TBSP.
The lower limit for TBSP is the rate at which the market can absorb new products.

Platform Competency Model

The purpose of the platform competency model is to depict the core elements that make up an organization’s software
development system (see Fig. 1). Each individual element of the model addresses a particular aspect of how an
organization’s development system works. The model collectively represents the overall operating model for software
development within an organization. At the same time the model is holographic since each of the elements contains
references to aspects of the other elements. As a result of this, the model is not amenable to hierarchical decomposition.
This will become apparent as each element is reviewed.

Product Portfolio Planning
The heart of the platform competency model centers around what the business requires of the teams developing software. A
product development organization is constrained by the dynamics of the marketplace and the competitive environment
within which it participates. The combined market and competitive forces determine accepted operating ranges for
investment, time-to-market goals, product specifications, ongoing support, and so on. These constraints put limits on
development organizations and establish acceptable bounds for TTM, TBSP, and R&D resource efficiency (e.g., engineering
years/product).

The result of integrating these constraints and high-level business goals is articulated as part of a business plan. The
business plan includes a product vintage chart, which shows target release dates for individual products over a multiyear
period (see Fig. 5). Apart from their use in business plans, product vintage charts are often supplemented by a set of
product lineage charts showing the hereditary relationships between products and their constituent components. Fig. 6
illustrates the structure used for a traditional lineage chart and Fig. 7 shows a platform-based lineage chart. Separate lineage
charts are often constructed to highlight different components of a product (e.g., electrical circuits, software and firmware,
industrial design, mechanical assembly, etc.). Lineage charts are also used outside of development labs to depict the
evolution of marketing, training, and support materials.

N1 N3

M2M1

M3

N2

L3

L2
L1

Notes:
1. M, N, and L are the same products as shown in Fig. 5
2. Typically, the arrows are annotated with software subsystems

or component names
3. Branches generate multiple versions of a software component.

Fig. 6. An example of a lineage chart that might be used for the software in different versions of the workstation

products shown in Fig. 5.

The key in planning a product portfolio is deliberate, systematic attention focused on developing a product lineage chart
that effectively addresses the organization’s product needs. The software version of the lineage chart sets forth what can be
accomplished as a result of the organization’s platform strategy. Together the product vintage chart and lineage chart
provide the framing for the product portfolio plan (see Fig. 8). The plan establishes the targets for the amount of
contribution that a platform makes to individual products. This is frequently expressed as both a target effort savings and a
target reuse percentage (i.e., the platform will reduce product investment by X engineering months and will provide Y% of
the final product code). It also sets forth the goals for TTM (time to market) and TBSP (time between successive products)
for an entire product family.

Article 6 August 1996 Hewlett-Packard Journal 7

High-End
(e.g., High-

Performance
Servers)

Midrange
(e.g., Servers

and
Workstations)

Low-End
(e.g., Low-End
Workstations)

Target Market Segment*

1993 1994 19951992

Spring Fall Spring Fall Spring Fall Spring Fall

N1 N2 N3

M1 M2 M3

L1 L2 L3

* The market segment also determines the product’s price.
Product Release Dates

Products

Fig. 5. An example of a product vintage chart that might be used for workstation products.

The product portfolio plan also includes a statement of overall goals, direction, and priorities. Details regarding product
definition and customer needs are incorporated by references to individual product plans (see Fig. 8). Thus, the product
portfolio plan provides the link between an organization’s platform strategy and underlying business goals. As such, it acts
to align and unify both platform and development teams and to set the context for individuals in the organization who are
charged with working out the implementation details for the platform strategy.

V1 V2 V3Platform Versions

Product Versions
for Different
Market Segments

N1

M2

L1

N2

M3

L2

N3

L3

M1Platform Origin

Fig. 7. Platform version of the software lineage chart given in Fig. 6.

Within HP, the portfolio plan tends to be a collection of slides built around an annotated product lineage chart. The product
lineage chart is modified to show the flow of software from the platform to individual products and includes a development
time line. This package of materials is augmented with details on the goals and objectives for the platform and product
teams. The loose structure and informal nature of HP’s portfolio plans work well as long as there is constant communication
to reinforce the underlying message about the organization’s chosen development paradigm and the link between this
paradigm and the organization’s business goals.

It is essential that all players understand why an organization has chosen the platform development paradigm and what it
hopes to achieve as a result of this choice. HP’s experience reveals that the rationale and expected benefits leading an
organization to adopt the platform development paradigm must constantly be reaffirmed by management. HP divisions that
have aligned their development labs around the platform strategy, engendered confidence throughout their organizations, and
provided ongoing direction and support during the transition to the new ways of working have adopted platform
development more rapidly and achieved better success than divisions lacking active management sponsorship.

Architecture Definition and Partitioning
Since platform development involves separating out the common elements contained within a product family, having a clear
and explicit platform architecture becomes very important. This is a key shift compared to traditional product development
in which a product’s architecture is often implicit and may not even be written down. In fact, often the architectural
knowledge of a product or set of products is contained within the head of a single architect or small group of architects.
Implicit and informal architectures work for serial independent projects and even for parallel product development when
team sizes are small, the level of complexity is low, and the amount of concurrent development is minimal (see Figs. 2
and 3).

These conditions make it possible for the architect or architects to explain the product architecture informally and to assist
other engineers as they develop their code. However, increasing complexity and simultaneous pull from multiple teams

Article 6 August 1996 Hewlett-Packard Journal 8

Product Portfolio Plan
• Goals and Direction
• Priorities
• Platform Plan
� Platform Definition and Architecture
� Contribution
� Target Integration Effort
� Reuse Percentages
� Schedule and Deliverables

Product Vintage Chart
and the Software

Lineage Chart

Product Plan A
• Product Definition
• Customer Needs
• Platform Contribution
• Product Contribution

(e.g., Value-Added Features)

Product Plan B

Fig. 8. The components of a portfolio plan.

often forces architects to spend most of their time communicating and helping others with the product architecture. While
this would be an extreme in the case of independent products, it is virtually certain to happen in the case of a platform. In
addition to supporting others, architects need to have time to focus on evolving and extending the architecture.

The solution to this situation is to have architects document and make explicit the platform and product architecture.
Formal architecture documents (diagrams and text) make it possible for engineers to access the architectural knowledge
that they need to complete their design and implementation tasks without having to refer to the architects constantly.
A documented architecture also provides a means through which development teams can provide feedback to the
architects so that they can tune and evolve the platform and product architecture. This not only directly benefits the
architects, but also helps to ensure that a set of high-quality and better-integrated products result. Having an explicit
architecture also makes it possible to quantify trade-offs between the platform and the product in a systematic way and
feeds the management planning processes for current and future products.

Another key distinction of the platform architecture is that it subsumes the partitioning between the platform and
platform-based products. In this respect it differs from traditional product architectures which usually do not differentiate
between individual products within a product family. Like all architectures, the platform architecture typically includes
major functional or technology subsystems and the interfaces between them. The chosen partitioning of architectural
responsibility between platform and product teams determines the degrees of freedom that product teams have in their
work. The shared challenge for platform and product architects is to determine where to draw the platform and product
boundary. The boundary needs to be drawn so that it balances the foundation and the infrastructure provided by the
platform with the amount of flexibility needed to support value-added product features.

HP organizations struggle in their selection of the initial boundary. In practice their initial partitioning is adjusted over time
to achieve the proper balance between platform contribution and product flexibility. Another lesson learned is the need to
delineate clearly which interfaces are jointly owned by platform and product teams and which are separately owned.
Translating architectural constructs down to the level of interface, module, and code ownership helps avoid conflicting and
uncoordinated changes to the platform. It also makes it easier to trade off changes explicitly since it provides a means of
linking to all directly impacted teams.

Product Feature Mapping
A closely related area of the platform development model is product feature mapping. This involves the translation of
customer needs into product features and ultimately into code implementation. The process of going from customer needs
to product feature definition is unchanged from traditional methods. A key shift occurs in the step where product engineers
figure out how to map their features to the architecture. Product engineers may no longer have full control in cases where
this mapping logically places part of a feature within the product and another part within the platform.

Fig. 9 illustrates the decision-making process that engineers go through to map their features to the platform and product
architecture. The ultimate goal of this process is to get engineers to understand what they need to implement and where it
falls within the code base. The productivity of product engineers is largely determined by how well they can apply the
architecture and move on to implementation. In the case of one HP division with a newly created object-oriented
architecture, product engineers were not able to use the architecture at first. The engineers’ lack of experience with

Article 6 August 1996 Hewlett-Packard Journal 9

Covered by
Architecture

Product-
Specific Code
to Be Created

Code to Be
Created

in Platform

Implemented
in Platform

Where it Will
Reside

Product-
Specific

Extension of
Architecture

Product
Feature

Type of
Feature

Who Will Do the
Implementation

Product
Team

Platform
Team

Fig. 9. The processes involved in mapping product features to platform and product architectures.

object-oriented concepts and the fact that the architecture was separated into logical, functional layers that did not directly
correspond to product features made it extremely difficult for them to understand how to use the architecture. As a result,
no product development progress was made.

The underlying lesson learned from this experience was the need for the platform architecture to be explained from a
product feature perspective, the way in which the product engineers thought about it. This division’s dilemma was solved
when the platform architect made explicit the process for mapping features to the architecture and taught this to the
product teams. What the architect and the rest of the platform team did was to walk through the process and provide direct
coaching to help product engineers work through mapping their features to the platform architecture.

An equally critical dimension of product feature mapping is the understanding by product project managers. Since project
managers are responsible for the schedule and resource plan for the product, they need to know what work their team will
do and what specifically will be provided by the platform. Consequently, the managers must understand the partitioning of
work across the platform-product boundary and also the overhead costs of incorporating reusable components from the
platform. This information in turn enables them to create an appropriate work breakdown and arrive at a schedule for their
project. The underlying shift here is to a new way of product planning. Within HP we have found it extremely beneficial to
provide training and coaching to product project managers to help them with their planning tasks.

Test Architecture and Strategy
The platform architecture not only helps define the dividing line between the platform and product, but also drives changes
in test strategies and implementation. Since the platform provides components, modules, and subsystems to product teams
before final system integration, some degree of testing of platform work products is necessary before they are delivered to
the product teams. Ideally, the platform team fully tests its work products so that product teams can focus on their specific
extensions to the platform. This division of test effort results in an overall reduction of the effort, defects, and schedule once
the first platform-based product is released.

Unfortunately, several factors complicate this ideal. It may be difficult to fully test platform functionality without additional
product-specific code, and in many cases platform functionality is developed concurrently with product functionality rather
than sequentially. Both result in lower code quality and potentially increase the testing burden placed on product teams.
Product teams usually cannot afford to be the de facto systems test organization for the platform because doing so
compromises their own goals, and in particular, their schedule. If product teams get overwhelmed with defects or
integration problems passed on by the platform team, conflicts in schedule, priorities, and even team relationships arise.
Furthermore, since platform and product teams often sit in close proximity, problem solving gets driven by personal
priorities and urgency rather than an objective, organized approach. As a result the organization’s cumulative testing effort
may actually increase, negating any potential savings.

Thus, a key factor of successfully using the platform development approach is the creation of a shared test architecture and
strategy that ensures the delivery of high-quality platform components, thereby enabling product teams to focus their
development and testing efforts on product-specific features. The goal of the test strategy is not to outline exhaustively the

Article 6 August 1996 Hewlett-Packard Journal 10

details of how the appropriate level of quality is built into deliverables, but rather to describe the overall risk management
and test approach. The test strategy makes reference to specific product milestones, checkpoints, and activities. As
expected, code drops correspond to key points of synchronization between platform and product teams. At each code drop,
there are specific outcomes, questions, and measures that describe both product and platform goals. Based upon these
expectations, testing and risk management activities can be determined. The test strategy specifies what these activities are
and when they occur, but not the details about their execution. For instance, the test strategy may call for design reviews
and inspections at particular points along the life cycle. The specific kinds of reviews or inspections, to what degree, and of
what documents, will depend on the types of risks that need to be mitigated.

The test architecture focuses and streamlines the multilayer, multicycle test process. Each element in the test architecture is
linked to the product architecture at the component, subsystem, interface (integration), system, or solution level. The
individual elements also serve to set the scope and purpose for test suites. For instance, multiple suites may exist to test
subsystems for functionality, usability, performance, or reliability. Once each test architecture element is defined, it gets
mapped to the test strategy and reconciled with development and milestone dependencies.

Without a test architecture to define the scope and purpose of a test suite, cycles in the test process will often be redundant,
increasing the time and resources used in each product team. A product and test architecture can also facilitate the
development of a platform regression test strategy. As a platform is used in more projects, the platform team will want a
method of ensuring that changes made to the platform don’t inadvertently impact the functionality of one product over
another.

Organizational Structure and Work Partitioning
In addition to the many architectural implications for developing products under the platform development paradigm, there
are many management issues that need to be addressed. The spectrum of management concerns is quite broad and includes
defining the context within which teams are configured, deliverables specified, and conflicts resolved, and defining how
teams communicate with one another. One pivotal management activity is the definition of the organization’s structure and
its processes for partitioning work.

Crucial differences in individual roles between platform development and traditional development paradigms are at the
heart of structural and work-assignment issues. Platform development does not result in the creation of new roles within an
organization, rather it causes existing roles to become explicit and more formal. In traditional development projects, one or
more individuals fulfill the roles of program management, project management, people management, product architecture,
and process architecture. A brief definition of each of these roles is contained in Table I.

Table I
Product Development Roles

Role Responsibilities

Program
Management

Integrate and coordinate all the functions involved in developing the product, including
marketing, development, learning products, and field support.

Project
Management

Develop and maintain the project budget and schedule, allocate resources, and manage
work assignments.

People
Management

Perform employee training, skill development, performance evaluation, salary adminis-
tration, and other administrative and legal tasks.

Product
Architecture

Develop and evolve the product architecture including coaching and mentoring others
on its application and use.

Process
Architecture

Define and integrate the various processes used during product development, including
how work is done, extensive communication, and process training.

Until fairly recently within HP, the roles of project management, people management, product architecture, and process
architecture were filled by a single project manager. This is still common in some HP divisions. As a result of increasing
product complexity, many divisions have created explicit positions for product architects and have thereby removed this
responsibility from their project managers. Some divisions have gone farther and pulled process architecture
responsibilities from their project manager positions and added new process architect positions. The separation of
responsibilities is especially important for platform development since multiple teams are working in parallel on products
within a single family. The larger scale of this endeavor makes it difficult for any one individual to juggle combinations of
these roles while simultaneously attending to the broad scope that accompanies each role. As a result, individual jobs tend
to be more specialized and better defined in this paradigm.

The key shift in organizational structure for platform development occurs when separate platform and product teams are
created (see Fig. 10). The separation of platform and product teams becomes a necessity when there is more than one

Article 6 August 1996 Hewlett-Packard Journal 11

Platform Manager
• Architects
• Team Members

Product A’s
Development
Manager
• Architect
• Team Members

Product B’s
Development
Manager
• Architect
• Team Members

Process
Architect

Product Portfolio
Responsibility

Fig. 10. The organizational structure for the platform development paradigm.

product under development at any given time. HP’s experience has shown that having one team simultaneously develop a
platform and a product while another team works on a different product is unworkable because of a perceived lack of trust
between teams. The underlying issue here is perceived favoritism by the platform manager for the platform team’s own
product effort. This perception is hard to counter and requires an explicit way to address conflict of interest issues. Our
solution is to separate the product responsibility from the platform to ensure that the platform effort is equally shared
between the various products. This solution takes advantage of an organization’s reporting structure and relationships.

Just picking an appropriate organizational structure is not sufficient for ensuring that work gets done smoothly. Individual
work assignments need to be aligned with the reporting structure. Otherwise, individuals within the organization can wind
up spending a lot of their time trying to figure out who does what for whom. In HP’s experience, formalizing individual roles
and responsibilities helps a lot. It simplifies the tracking of individual accountability and provides the context for
optimization of work assignments. In addition, management leadership and direction are needed to help people cope with
ambiguity and to address coordination of activities across team boundaries.

Partnership Model and Contract
Management, through its own style and working relations, sets the tone and context for how teams work together. As a
result, management behavior largely determines the kind of partnerships that will exist within the the organization. The
purpose of having a partnership model and contract is to make explicit how teams are to work together.

The reuse of software components fundamentally involves a producer-consumer relationship in which one or more teams
produce software assets that other teams use. In the case of platform development the platform team is the producer and
the product teams are the consumers. How the teams work together determines the overall success of their combined
effort. Team perceptions of autonomy, accountability, and control all weigh heavily in setting the context and boundaries for
how teams can work together.

The starting point for establishing a solid working relationship is given by the organization’s existing social and cultural
norms. Within HP we have found that if either team seeks to gain sole control of the relationship, the platform development
system will fail. The key shift that is needed is for all teams to think and act as full partners. The notion of working together
on a collaborative effort creates a win-win situation and avoids the inherent conflict in one team being superior to another.
It also blurs the distinction between platform and product team roles and thus provides a greater degree of flexibility in
work assignments (refer back to Fig. 9).

While the partnership model defines the preferred working mode between teams, the partnership contract is the ultimate
agreement that is reached between product and platform teams with respect to their mutual deliverables. As such, the
partnership contract incorporates and builds upon the partnership model. It contains the specifics of what gets delivered, by
whom it is delivered, and when it is delivered. It also includes the explicit communication channels that will be used between
teams as well as the mechanisms and protocols for handling changes and exceptions. The partnership contract is not a
legally binding document, rather it results from discussions between platform and product teams.

Within HP the process of negotiating a partnership contract is more important than the contract itself. For each new
product, the corresponding platform and product team members sit down and work through a series of questions to arrive
at a mutual agreement that supports the organization’s product portfolio plan. The final answers to the questions can then be
incorporated into the platform and product team plans as appropriate (see Fig. 8). This negotiation process serves as a
mechanism for joint planning and lays the foundation for the ongoing relationship between the platform and product teams.

Article 6 August 1996 Hewlett-Packard Journal 12

Management Processes and Steering Teams
Management processes provide mechanisms for managing ongoing team relationships and for addressing changes in both
internal and external requirements. The processes include mechanisms for interproject planning and resource prioritization,
tracking and controlling progress, and recognizing, escalating, and resolving issues. At an aggregate level these processes
need to be aligned with the product portfolio plan. Management is responsible for achieving alignment and for providing
their people with the means to work toward the overall strategy.

A key shift in platform development is the creation of standing teams to deal with ongoing issues. In particular, management
typically charters a management steering team and an architecture steering team. The management steering team is made
up of the portfolio manager, the platform manager, the product team managers, and the process architect. The team may
also include the manager of a separate quality or testing team. The team is responsible for monitoring progress, maintaining
resources and schedule synchronization, and resolving daily operational issues. The existence of the team is not meant to
replace ongoing, one-on-one work. Rather, team meetings serve as a forum for surfacing issues and establishing linkages for
issue resolution.

Architecture steering teams are staffed by senior designers, architects, and technical people. They also include an
organization’s process architects. Their charter is to focus on managing the overlap between the platform and product
architecture. The team is responsible for ensuring that the architecture can be used by product teams effectively and for
managing the evolution of the architecture so that overall architectural integrity is preserved.

Within HP, management and architectural steering teams are used at multiple levels. The number of teams and their
structure depends on the complexity of a division’s business, the number of product lines, and the number of distinct
platforms within those product lines. Generally, one steering team is created per platform. In our experience steering teams
work well when they are staffed with key stakeholders and have clear, well-articulated charters. Management needs to set
appropriate team expectations and model new desired team behaviors, especially if they differ from the organization’s
existing norms.

Communication and Feedback Model
The success of an organization’s platform development system is largely a function of the strength of its communication and
feedback paths. Good communication between platform and product teams is essential for reducing unexpected surprises
and supporting rapid decision making. For communication to be effective, the right information must reach appropriate
individuals in the organization at the proper time. Incorrect, inappropriate, or out-of-date information has little value, and in
fact, can be counterproductive.

The attributes of a good communication and feedback model are that it:

� Specifies communication roles and responsibilities

� Enumerates the taxonomy of information types

� Identifies explicit communication links, channels, and pathways between teams

� Establishes triggers for certain types of informational exchanges

� Creates a context for continual organizational learning.

The communication and feedback model can be thought of as an architecture for the movement of information within an
organization. As such it plays a major role in helping to ensure that the right information gets to the right place at the right
time.

The key shift for most organizations is coping with the need for wider dissemination of information. As the number of
interdependent teams increases, the number of stakeholders with interest in a given piece of information increases. Putting
together a communication model in the form of a data flow diagram helps teams identify who needs to know about plans,
assignments, issues, status, best practices, and successes. However, getting information to flow is not enough because the
recipients of the information need to be able to respond and act on the information, if appropriate. The challenge for
individuals transmitting information is to gather feedback on the effectiveness of their communication and to tune future
information exchanges. Having individuals automatically check their communication effectiveness serves to build and
promote organizational learning.

Within HP we have seen significant gains in organizational performance as a result of eliminating communication slippage
and optimizing its efficiency. Pleasant, clear communication lowers organizational stress and makes it easier for people to
work together. It also enables faster and higher-quality decision making. Many divisions are using e-mail and World-Wide
Web publishing to make platform information more readily available to product teams.

Support Model
It goes without saying that for product teams to be effective, they must be able to understand, incorporate, and successfully
use the platform. This includes the platform architecture, its components, development tools, and the underlying process
infrastructure. The support model addresses how product teams get assistance as they work to incorporate platform
components into their products. It provides the means by which product teams get help in the following situations:

Article 6 August 1996 Hewlett-Packard Journal 13

� Achieving understanding and resolving “how to” questions (e.g., How do you do X? How does Y work?)

� Sorting out instances of something not working as expected or not meeting a product’s needs (e.g., There appears
to be a bug in X. Can Y be adapted to support product feature Z?)

The creation of a support model starts with the identification of detailed support requirements and establishes the mechanics
and logistics for how platform and product teams work together. It includes both initial training and ongoing support during
implementation. The support model identifies the types of support provided, the mechanisms through which it is delivered,
and the overall service level expectations (e.g., typical turnaround or response time). The model covers activities such as
providing documentation, delivering training, answering questions, making defect repairs, and releasing enhancements. It
also sets forth support roles and responsibilities—to whom to go for assistance. Finally, it includes an escalation path for
resolving impasses.

The concept of a support model is not new. In fact, most organizations have an explicit model for supporting their
customers. The key shift in platform development is the creation of an explicit support model for in-house product
development work. The need for putting formal structures in place increases with the number of product teams working in
parallel. In HP’s experience the most effective platform support models are developed jointly by platform and product teams.
We have found that including a set of agreed-upon performance measures serves to calibrate and set individual expectations.
Typical measures include support availability, response time, and limits on the maximum number of hand-offs. Finally, the
support model’s scope extends beyond product construction and needs to include product planning and testing.

Platform and Product Life Cycles
In addition to the need for more formalized support, platform development results in many changes to an organization’s
development practices. The development process changes are incremental in nature and generally reflect a formalization
and refinement of existing practices. An organization’s platform and product life cycles provide the structure and context
within which individual processes fit. Like other life cycles, they are characterized by major phases with associated goals,
activities, deliverables, and checkpoints.

Fig. 11 shows the underlying structures of the platform and product life cycles. The major phases of the two life cycles are
very similar. Since the platform architecture and components flow from the platform into products, there is a dependency
between the two life cycles. The close coupling of the two life cycles represents a key shift compared to autonomous
development projects.

The output of the platform investigation phase is a definition of the overall system architecture and answers to the following
questions:

� What is the platform?

� How is it intended to be used?

� How will it be delivered to product teams?

� How will it be supported?

� How will it be extended and evolved over time?

Platform
Version 1

Platform
Requirements

Definition

Feasibility
Validation

Architecture
Definition

Platform
Development

Plan

Infra-
structure

Development

Code Construction

Plan Implement TestDesign

Platform
Integration

Test
(As Needed)

Product 1
Product

Requirements
Definition

Feasibility
Validation

Platform
Architecture
Instantiation

Platform-
based

Development
Plan

Adopt
Platform

Infra-
structure

Code Construction

Plan Implement TestDesign

System
Test

Product 2

Final
ReleaseInvestigation

Investigation

ImplementationI/L

Iteration

Code
DeliverablesI/L M/R

Iteration and
Interim Releases

Fig. 11. The platform and product development life cycles.

FeedbackInput and
Feedback

Input and
Feedback

Article 6 August 1996 Hewlett-Packard Journal 14

As part of this phase, the platform team identifies necessary changes to existing development practices needed to support
platform development. The proposed ways of doing things form the basis for what is called the platform way. The
deliverables from the investigation phase of the platform need to be essentially complete when product teams move from
requirements definition and feasibility validation to instantiating the platform architecture and building upon the platform
plan. There is a similar dependency in the implementation phase between infrastructure development and use. The
infrastructure consists of the processes and tools that support the platform way.

The implementation phase of the platform life cycle often overlaps with product implementation work. This arrangement
requires coordination between iterations of platform and product code construction. The use of an evolutionary
development methodology, which subdivides code construction into a series of short plan, design, implementation, and test
cycles, provides one way to achieve the needed coordination (see Article 3). In addition to continuous feedback and
integration of platform and product components during implementation, continued support for platform use is essential. As
mentioned earlier, the test architecture and strategy will determine the overall approach to verification and validation by the
platform and product teams.

The platform life cycle does not end when the platform components for all currently active products are finished. Rather it
wraps around and a new investigation phase begins. In subsequent iterations the platform architecture, processes, and
components are modified and extended based on new requirements. The boundary between the platform and products may
change as certain features migrate into the platform so that they can be used by subsequent products.

HP’s cumulative experience underscores the need to separate platform and product life cycles. Furthermore, life cycles must
be linked to existing hardware life cycles, or software work may not begin until after the hardware prototype is done,
thereby delaying product introduction. We have also learned that securing future product input during the development of
the overall system architecture and definition of the platform way is essential to building strong interteam relationships. One
particularly effective way to engage future product teams is to involve them in signing off on platform checkpoints.

Development Model and Development Process
The development model and the development process describe how new functionality is created. They cover the processes
used in the creation and enhancement of a platform module through its integration into products. They are analogous to a
module or component life cycle in that they catalog the development steps spanning from construction to final use. Since
platform modules and components are ultimately used by product teams, the development process really includes two
different perspectives: software asset development and software asset utilization. The key shift in platform development is
formalization of these perspectives.

In cases where the boundary between platform and products is diffuse, a single process incorporating both perspectives can
be used. The common process can be applied by both teams regardless of whether they were building platform or product
functionality. On the other hand, a sharp boundary has the advantage of providing product and platform teams with greater
autonomy over their work, since each can use different processes. For example, if the platform-product interface is
confined to linking a set of library modules, then the platform might be designed and built using object-oriented methods
and tools, while product teams might use traditional structured programming methods and tools. This decoupling is not
without cost because the use of different methods and approaches makes it harder for teams to communicate—consider the
difference between object-oriented programming in C++ and functional programming in C. Furthermore, its very existence
raises the cost of modifying the platform and product boundary and makes it significantly more expensive to migrate
functionality across the boundary. It also reduces resource flexibility by making it more difficult to move engineers between
the platform and product teams.

Experience within HP has shown that platform development proceeds smoothly when platform and product teams follow
highly complementary development processes. By agreeing to use common methods and tools, platform and product teams
make it easier for one another to cross the boundary between their work domains. This provides flexibility so that resource
use can be optimized. It also allows for evolution of the platform through incremental redefinition of the platform-product
boundary. HP division’s have reaped significant benefits from having documented development processes since these
reduce the support burden for bringing new engineers up to speed on how things are done.

Delivery Model
The delivery model defines how platform modules, components, and subsystems are passed on to product teams. Platform
deliveries are essentially a microcosm of the product release process since they cover the depth and breadth of what a
development organization delivers at the manufacturing release (M/R) of a product. At M/R, a final production build is
delivered to manufacturing along with a set of release notes, documentation, and other supporting material.

Final release may be proceeded by multiple iterations and intermediate releases, especially in the case of complex systems
products. Furthermore, each constituent part of the whole product can be delivered in a different way. For example, while
physical hardware and firmware go to manufacturing along with detailed assembly, calibration, and packaging instructions,
the product’s software drivers may simply be given to a third party for replication.

Although most organizations have long had internal hand-offs among teams, the key shift in platform development is making
these handoffs and deliveries explicit. While the platform life cycle outlines the types of artifacts that get delivered and

http://www.hp.com/hpj/aug96/augart3.htm

Article 6 August 1996 Hewlett-Packard Journal 15

when they are delivered, the platform delivery model provides specifics on what is delivered and how it is delivered. If a
delivery is analogous to passing a package from one team to another, then the delivery model corresponds to a packing list
or bill of materials.

The delivery model also specifies how the package is delivered to the product teams. The delivery mechanism typically falls
somewhere along the continuum from push to pull. In the push case, the platform team delivers packages when they are
ready. In the pull case, product teams request packages when they want them. There are pros and cons to each approach.
The push approach can force product teams to use something before they are ready, while the pull approach can cause the
platform team to support multiple versions of the same component. Within HP most divisions have adopted a hybrid model in
which both push and pull approaches are used depending on the type of each deliverable.

Although it might be tempting to rely on an ad hoc delivery model, HP’s experience shows that having an explicit, formal
delivery model is essential to ensure that product teams can successfully use the platform. This is particularly true when
multiple product teams are simultaneously using the platform. Furthermore, the delivery model provides additional means
of supporting product team members.

Validation and Test Processes
Another important aspect of platform and product development is the accompanying validation and test processes. These
processes correspond to the tactics used to implement the overall system test strategy and architecture, including the
selection, implementation, and execution of appropriate testing methods and procedures.

In traditional product development, testing is often relegated to the back end of the life cycle and almost becomes a
certification step intended to ensure that the product meets certain quality and reliability requirements. In contrast,
progressive development organizations view testing as a process of verification and validation that can be applied throughout
the product life cycle. These organizations conscientiously perform verification and validation activities as early as possible
in their life cycles to catch defects early and thus reduce overall development effort and shorten back-end cycle time.

Organizations that have successfully made the shift to early defect detection see testing for platform development as a
variant of their current processes. For others, the move to platform development forces a shift in testing emphasis to
architected, early defect detection. When this shift is not made in time, platform development projects become very painful
and can even fail.

The key shift needed is for the platform team to certify its work products before they are delivered to product teams. Many
testing techniques can be used to ensure appropriate levels of quality throughout the development life cycle. Techniques
such as formal design techniques, reviews, and inspections can be used to catch errors before moving into implementation.
Prototypes can be used to demonstrate feasibility and validate certain design constructs. Coding standards help to ensure
code portability and bounds checking is accomplished via assertions in the code. Downstream activities include white box
and black box testing, unit testing, and regression testing. The stability of code modules or product components is verified
by doing frequent, regular builds. Finally, integration testing is used to ensure proper cohesion between platform and
product components. This list of possible verification methods is by no means exhaustive and many additional types of tests
and quality methods exist. It is incumbent on the teams to pick those methods that best address their particular project
risks.

Once the platform team has developed processes that meet the delivery criteria of the product teams, the second key shift is
for the product teams to leverage and complement the validation and verification already accomplished by the platform
team. This shift involves making changes in the product test process to leverage the test architecture and focus test cycles
on product-specific contributions and their integration with the platform. If product teams find themselves testing platform
components, then something is wrong. This is analogous to having teams that use C compilers do testing on the
accompanying C libraries.

Experience within HP indicates that when the product test strategy is not revised, unnecessary redundant testing occurs.
In this case the platform is fully tested as part of every product. As the number of simultaneous products under
development increases, so does the burden placed on those doing system testing. The end result is repeated testing of parts
of the platform, at high cost, and with little added risk reduction.

Development Tools and Infrastructure
The final element of how engineers undertake their work is made up of the development tools and infrastructure that they
work with. The tools needed for platform development are no different from those used in other development activities.
However, platform development often demands more from the development tools and infrastructure than traditional
product development. Since platform development is usually accompanied by a higher degree of complexity, tool flexibility
and robustness often become issues. Key shifts in this area have to do with (1) formal tracking of project issues, (2)
architecture, design, and process documentation, and (3) robust configuration management.

Ad hoc issue management breaks down in the case of platform development because of the large number of stakeholders
external to the platform team. The use of a process and tool to maintain a database of issues and their resolutions not only

Article 6 August 1996 Hewlett-Packard Journal 16

supports the ongoing issue management, but also provides a means of capturing historical information about key project
decisions.

Design documentation and automation tools help with the generation of documentation that is essential for successfully
supporting product teams. Standard design tools also help to ensure consistency across the work of the members of the
platform team by providing common formats for individual work products.

Finally, tools for simple version control are replaced by a full-fledged source configuration management system that
provides the needed horsepower to address concurrent platform and product development needs. In HP’s experience
moving to a robust source configuration management system leads to new ways of working. The transition to more
sophisticated processes for version, build, and workspace management is nontrivial.

Metrics and Measurement Processes
Metrics and measurement processes cut across all the other elements of the platform development model. These processes
are used to know how things are going and to flag potential exceptions. Although any organization can collect metrics, the
real question is whether or not the organization’s metrics are driving effective decision making. A good metrics program
measures the right things and then provides a means for acting on the data collected.

Since metrics communicate what is important and focus organizational energy, they provide a mechanism for shaping and
institutionalizing the platform way of doing things. Consequently, they provide a means of reinforcing the new behaviors
that are required for platform development to be successful. A set of metrics can be defined for the elements of the platform
model in such as way that the metrics correspond to how well each element is working for the organization. Defining this
set of metrics, rolling them out, and following through correspond to the key shifts in this area.

The management processes and steering teams and the platform and product life cycle directly link many of the metrics to
decision making within an organization. An organization’s management processes and steering teams provide the context
for ongoing review of metrics and for taking appropriate follow-up actions, particularly those related to planning,
management, and support issues. With respect to the architecture and development elements of the platform competency
model, metrics are included as part of the platform and product life cycles. The metrics for individual elements are tied to
specific life cycle checkpoints (refer back to Fig. 10).

The metrics that an organization collects and uses largely depend on its business requirements and level of maturity.
A technique that has been particularly effective within HP is the goal/question/metric paradigm (GQM).2 The principles
behind GQM are rather simple. It begins with a goal or set of goals, defines a set of questions that provide visibility into how
well the organization is doing at meeting the goals, and identifies a set of measures that provide answers to the questions
(see Fig. 12). Since GQM is not necessarily linear, it can be used as a means of exploring and clarifying the meaning of a
stated goal. This makes it a powerful technique for defining the metrics for the individual elements of the platform model.

Values and Reward System
In most organizations individuals act based on their beliefs, values, and understanding of the consequences of their actions.
Although people do extraordinary things when presented with dire consequences, in most cases an extraordinary level of
performance is not sustainable. High turnover and burnout in development organizations are often the result of continually
demanding individual and team heroics. The norms for individual and team behaviors depend on an organization’s culture
which in turn is shaped by the collective beliefs and values of individuals within the organization.

The importance of shaping organizational culture to support platform development cannot be understated. The first step in
making the transition to new behaviors for platform development is to identify the vision for how things will be working
when platform development is fully functioning within the organization. The vision needs to be vivid, rich, and descriptive.
Having a vision is not sufficient to get an organization to its desired state. The organization’s culture, values, and rewards
must be aligned with the vision.

Goal: Reduce software integration time.

Question1: How many builds are there in the integration time?
Metric: Number of builds.

Question 2: How long does an average build take?
Metric: Calendar time, engineering effort.

Question 3: How many unplanned builds are there?
Metric: Number of planned builds versus unplanned builds.

Question 4: How many failed builds occur?
Metric: Number of failed builds versus successful builds.

Fig. 12. An example of the goal/question/metric paradigm (GQM).

Article 6 August 1996 Hewlett-Packard Journal 17

The organization’s recognition and rewards systems play a major role in reinforcing the desired new behaviors that are part
of the platform way. It is extremely important to align performance evaluation, recognition, and reward mechanisms with
behaviors that simultaneously support achieving platform, product, and business goals. A common failure is to assume that
all of these mechanisms and systems are aligned. The key shift is to link the desired state explicitly to specific roles and
activities within the organization and to make sure that those roles, activities, and behaviors are reinforced.

Within HP we achieve alignment by working issues both top-down and bottom-up. As a result we integrate business thinking
with the logistical, operational, and personal attributes of vision in such a way that individuals throughout the organization
know how they fit in. We have also found it necessary to revise existing performance evaluation criteria to tie them to an
organization’s platform development strategy.

Results
Various divisions within HP have realized productivity and efficiency gains as a result of adopting the platform development
paradigm. The degree of improvement varies between divisions and further gains are expected since many divisions are still
in the midst of their transition.

One division has doubled its product generation capability from an average of two to four new products per year with no
increase in development staff. Another division has cut its time between product releases (TBSP) from twelve to six months
and has slowed staffing growth despite an exponential increase in the number of new product releases per year. This
division’s staff grew linearly while the number of product releases went up almost tenfold over a three-year period. The
experience at another division included increased product consistency, improved similarity between products within a
product family, and better overall quality. These benefits ultimately enabled this division to offer a better integrated solution
to its customers. Furthermore, this division cut its time to market for new products and has reduced the time required to
bring new staff on board and make them fully productive.

Fortunately, organizations do not have to wait until they complete the transition to platform development before they start
reaping benefits. Since platform development mandates a higher level of organizational maturity and individual skill, it helps
to institutionalize solid engineering practices. Typically, there is an incremental productivity gain associated with each
improvement in existing engineering practices. Thus, an organization’s transition to platform development effectively
compounds multiple productivity improvements. Benefits can be reaped all along the journey and not just at the end. In fact,
for those HP divisions that have had to cancel or delay their platform efforts, most are better off than before their migration
to the platform development paradigm. The reason for this is quite simple: they continue to use better engineering practices
on new and existing projects.

In comparison to the business impact of platform development, the results from using the platform competency model in
development are not quite as dramatic. The model has primarily been used as a tool for exploring the many facets of
platform development. It has proved to be an excellent vehicle for building a shared understanding of what it will take to
institutionalize platform development within an organization. The model has also been used as a diagnostic tool to identify
areas requiring further attention, thus providing the basis for developing an overall investment plan.

Significant differences exist between the investment plans of different organizations. Differences in the magnitude and
sequencing of investments in the elements of the competency model can be traced to differences in an organization’s
respective level of software expertise, the maturity of its operating practices, and its business constraints. Since each
organization has a different profile, its roadmap for establishing a platform capability is uniquely its own. In our experience,
when organizations stumble in their adoption of the platform development paradigm, the root cause of their difficulty can
be traced to one of the model’s elements.

The feedback that we have received as a result of using the competency model with HP divisions has only served to validate
the model. There have been a few minor additions to the model, but no significant changes. The unanimous consensus
within HP is that each and every element of the model is critical. All sixteen elements of the model are necessary for
successful deployment of platform development.

Conclusion
Although numerous product development strategies and paradigms are in use throughout HP, platform development is
becoming the paradigm of choice within HP. The platform competency model discussed in this article captures the essence
of HP’s cumulative experience in platform development. The model is being used by HP product development organizations
to understand the requirements and implications of platform development, to guide the creation of investment plans, and to
assist in the customization and tailoring of the model’s elements to fit each organization’s particular situation.

Engineering Perspective
From an engineering and technical perspective, the platform development paradigm is an enabler for technologically
superior products. The use of a platform as the base for new products allows engineers and architects to focus their efforts
on the key, new technical contributions. The use of a platform also results in more solid products that are higher in quality,
better integrated, and more consistent. This degree of robustness results from the continual evolution and improvement of
the platform.

Article 6 August 1996 Hewlett-Packard Journal 18

Management Perspective
The platform development paradigm results in a number of changes in the way development teams are managed. Since new
products are developed using both platform and product component streams, management attention shifts from an intense
product focus to a more integrated and global perspective. Managers find themselves actively involved in charting their
organization’s future, in setting appropriate goals and objectives, and in establishing the necessary supporting
infrastructure. Managers through their own actions shape how their organization transitions into new ways of working
within the platform development paradigm.

In platform development, managers are principal actors in understanding the trade-offs between product and platform team
needs, communicating and making those trade-offs explicit, linking them to short-term and long-term project and business
goals, and finally, taking appropriate action. Ultimate success is rooted in the ability of the entire management team to align
its thinking and actions around its instantiation of the platform development paradigm. Active participation by multiple
levels of management, appropriate acceptance, and support are necessary but not sufficient conditions for successful
implementation of the platform development paradigm.

Platform development enables an organization to deliver innovative, feature-rich, high-quality, and consistent products on
short development schedules. It does so through increased reuse, reductions in per-product testing, and ever increasing
product quality. Simultaneously, it raises overall engineering efficiency, makes it easy to assimilate new engineers, and
improves schedule predictability. These gains ultimately translate into reduced development cycle times and shorter time to
market.

Organizational and Business Perspective
From a systemic viewpoint, the platform development paradigm is just one of many product development strategies.
Increased development efficiency and cycle-time reduction can be achieved in incremental steps by gradually evolving an
organization’s development competencies. Transitioning to platform development is nontrivial and is in many ways
analogous to reengineering the product development process. So even though changing development paradigms is a business
imperative for some HP divisions, the shift away from largely independent and autonomous development projects to
collections of interrelated projects is somewhat countercultural. Successful adoption of the platform development paradigm
requires aligning the organizational culture, values, and rewards to support new ways of working.

There are numerous approaches to adopting platform development. Within HP most development organizations tend to
follow an incremental, evolutionary approach as opposed to a complete, ground-up, or reengineering approach. The former
supports ongoing, new product development efforts and gradually improves an organization’s development capability. As
such it reduces the amount of change the organization must assimilate at any given time and stretches the change investment
out over a longer period of time.

Regardless of the approach that an organization selects, there are many common issues and challenges that it will face and
yet each organization inevitably faces some unique issues and challenges. How an organization goes about implementing the
capabilities underlying the model’s individual elements will vary depending on its situation. Each organization needs to
work out an implementation plan that fits the parameters of its business context.

Acknowledgments
I would like to thank the many individuals within the software initiative who have been working in partnership with HP
divisions to implement platform development. I believe that they are truly making a difference for HP by helping divisions
reach a new level of competitiveness in their software development effort. The platform competency model is the result of
their hard work and the many learnings from actual applications of the model. I would like to extend special thanks to Todd
Cotton, Ron Crough, Mark Davey, Joni Ohta, and Mike Ogush for working with me on the definition, application, and
evolution of the platform competency model.

References
1. G. A. Moore, Crossing the Chasm: Marketing and Selling Technology Products to Mainstream Customers, Harper Business,

1991.
2. T. Gilb, Principles of Software Engineering Management, Addison-Wesley, 1988.
3. R. B. Grady, Practical Software Metrics for Project Management and Process Improvement, P T R Prentice-Hall Inc., 1992.

http://www.hp.com/hpj/aug96/augart7.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Article 7 August 1996 Hewlett-Packard Journal 1

A Decision Support System for Integrated

Circuit Package Selection

The package provides signal and power distribution, heat
dissipation, and environmental protection for an integrated circuit
(IC). The process of selecting a package is complicated by the
large number of packaging alternatives with overlapping
capabilities. To handle these difficulties, a decision support system
was developed. The Package Selection System (PASS) combines
expert system tools and multiple-attribute decision making
techniques. The expert system provides a list of technically
feasible alternatives. The multiple-attribute decision making
modules are used to rank the alternatives based on nontechnical
criteria.

by Craig J. Tanner

Two current trends in the electronic industry greatly increase the need for tools that assist in the selection of IC packages.
The first trend is the emergence of a new field of electronics known as “manufacturingless manufacturers” (MLMs). The
second trend involves the introduction of competing and overlapping technologies from subcontract packaging services.
This trend complicates the package selection process because it creates many technically feasible packages for the decision
maker to choose from.

MLMs are only concerned with the design phase of IC manufacturing, and in some cases final package test. All of the
support activities associated with ICs, such as wafer fabrication, test, and packaging of the IC are subcontracted outside of
the company to foundry services. The finished product is then sold by the MLM to the end user. MLMs have several
advantages over full-service semiconductor companies. They can concentrate on doing one thing (design) well and they have
no overhead or R&D costs associated with maintaining and developing IC manufacturing processes. Because the engineers
who work for MLMs are typically focused on the design phase and are not experts in packaging, an IC package selection
system can be a valuable tool.

The introduction of competing technologies from packaging subcontractors has made the selection process more difficult. In
the past, there was usually one dominating technology that filled a particular niche. As United States and Asian
subcontractors have become more involved in the research and development of new technologies, sometimes several
packages that have similar technical attributes have been made available to users almost simultaneously. For example, the
packages shown in Table I were released within 18 months of each other and all were aimed at users who need thermally
enhanced surface mount packages.

Multiple-attribute decision making (MADM) techniques are incorporated into the decision support system to provide the
decision maker with a method for selecting an IC package from among technically feasible alternatives. The MADM
modules allow the decision maker to rank the feasible alternatives using nontechnical criteria. This technique can
effectively address the emerging trend of simultaneous introduction of competing technologies from different suppliers.

Table I
Competing Thermally Enhanced Surface Mount Technologies

 Technology Company

Metal Quad Flat Pack OIT

Micro Cool Motorola

Enhanced Dissipative
Quad Flat Pack

ASAT

Power Quad I & II Anam

Article 7 August 1996 Hewlett-Packard Journal 2

System Overview
The Package Selection System (PASS) contains all of the subsystems that are typical components of a decision support
system:1

� Database management system (DBMS)

� Model-base management system (MBMS)

� Dialog generation and management system (DGMS).

The DBMS is composed of a database and a management system. A database is a file or set of files containing information
needed, generated, or manipulated by a computer program. The management system provides the method for creating,
accessing, and maintaining the database. The PASS database is an individual records model. This model consists of a set of
records in which each record contains a set of fields. Each record represents a type of package. Attributes of that package,
such as price, are contained in the fields. Because the database is an ASCII file, a separate management system is not
required. The database can be updated and maintained through the use of any text editor or word processor that is capable
of reading and writing ASCII files.

The MBMS consists of three models. The first model is a knowledge-based expert system. The expert system is used to
determine which IC packages are technically feasible. The second and third models use the multiple-attribute decision
making techniques known as PROMETHEE and AHP. These models allow the decision maker to rank the technically
feasible alternatives based on pricing and other nontechnical attributes.

The DGMS is classified as a graphical user interface. A graphical user interface (GUI) is a means of visually communicating
between the user and the application. The attributes of visual communication include the graphical techniques used to
communicate a concept, a task, a message, the contents of a screen, or any other interface component. The overall look and
feel of a GUI is established through the use of screens, windows, controls, panels, icons, menus, animation, and sometimes
sound (while sound is not visual, it can be a visual enhancer).

A sample screen from PASS is shown in Fig. 1. This screen is used for entering custom alternatives. Output from PASS
sessions is presented in two ways: graphically and as an ASCII text file. The DGMS also contains an online help facility.

Fig. 1. Package Selection System (PASS) screen used for entering custom alternatives.

The three subsystems described above must interface with each other and the decision maker to form a complete decision
support system. A block diagram of the PASS components is shown in Fig. 2. The MBMS contains analytical tools and
heuristic tools. The AHP and PROMETHEE modules are mathematical models while X-PASS employs expert heuristics in the
form of a knowledge base and an inference engine. Decision support systems that use both of these problem-solving
methods are frequently called hybrid decision support systems.2

Article 7 August 1996 Hewlett-Packard Journal 3

Decision
Maker

Knowledge
Engineer

DGMS
User

Interface

Individual Records
Model

Pac_Dat.Txt

Excel Spreadsheet
Database for General

MADM Problems

DBMS

Knowledge
Base

Working
Memory

AHP

PROMETHEE

Rule
Adjuster

MBMS

X-PASS

Inference
Engine

Fig. 2. PASS block diagram.

Multiple-Attribute Decision Making
Multiple-attribute decision making (MADM) is the study of techniques that can be used by a decision maker to select a good
alternative from a finite number of alternatives when faced with conflicting objectives. MADM techniques are necessary in
PASS because X-PASS typically generates multiple alternatives and a method is needed to evaluate these alternatives.
X-PASS only makes recommendations based on the technical aspects of electronic packaging. Technical attributes tend to
overlap packaging technologies.

Nontechnical attributes such as price and delivery have varying degrees of importance based on the application and the
decision maker’s objectives for a particular integrated circuit. MADM techniques offer powerful ways of dealing with the
decision maker’s preferences and for ranking alternatives. For this reason multiple-attribute decision making has been
included in PASS.

PASS contains two modules for performing multiple-attribute decision making. The first module uses PROMETHEE
(Preference Ranking Organization Methods for Enrichment Evaluation). The second module uses AHP (Analytic Hierarchy
Process).

Including both PROMETHEE and AHP in the decision support system allows those users who subscribe to either the French
or the American schools of thought to take advantage of that preference. Offering both techniques is also an advantage for
those users who have no preference or are not familiar with MADM techniques. These users benefit by examining both
methods and selecting the technique with which they are most comfortable. The following sections contain a brief
discussion of the PROMETHEE and AHP methods.

PROMETHEE
The PROMETHEE technique was presented by Brans and Vincke in 1985.3 PROMETHEE is an outranking method and can
result in the partial preordering of alternatives (PROMETHEE I) or the complete preordering of alternatives (PROMETHEE
II). The PROMETHEE methods consist of three steps: construction of generalized criteria or preference functions,
calculation of the multicriteria preference index, and determination and evaluation of an outranking relation to give an
answer to the multiple-attribute problem of interest.

During the construction of generalized criteria, the decision maker must assign a preference function, Ph(a,b), to each
criterion fh, where h � 1,2,...,k. The preference function gives the degree of preference of the decision maker for selecting
action a rather than action b. Four meanings are given to the preference function:

� Ph(a,b) � 0 No preference for a over b, fh(a) and fh(b) indifferent.

� Ph(a,b) � 0 Weak preference for a over b, fh(a) > fh(b)).

� Ph(a,b) � 1 Strong preference for a over b, fh(a) >> fh(b).

� Ph(a,b) � 1 Strict preference for a over b, fh(a) >>> fh(b).

Article 7 August 1996 Hewlett-Packard Journal 4

Hi (d)

1

1/2

d dq pqp

Fig. 3. Graph of the generalized criterion Hi(d). The parameters p, q, and d are defined in the article.

For example, if in comparing a $5.00 package a to a $7.00 package b, the decision maker feels that the $2.00 difference
between fh(a) ��$5.00 and fh(b) � $7.00 is insignificant, then there is no preference for a over b and Ph(a,b) � 0.

The difference between the two evaluations, d, is equal to fh(a) � fh(b). Hh(d) is then defined as:

 Hh(d) � Ph(a,b), d � 0

 � Ph(b,a), d � 0.

The function Hh(d) combined with the criterion fh, that is, Hh(d) � {Hh(d),fh}, is called the generalized criterion associated
with fh. Brans, Vinke, and Mareschal4 have developed six possible types of generalized criteria. While other generalized
criteria can be defined, these six should meet most decision makers’ needs. They require that the decision maker define only
a few parameters.

One of these generalized criteria is defined as follows (see Fig. 3):

 Hi(d) � 0, �d� � q

 � 1/2, q � �d� � p

 � 1, otherwise,

where q is the indifference threshold, which represents the largest value of d below which the decision maker considers
there is indifference, and p is a strict preference threshold, which represents the lowest value of d above which the decision
maker considers there is strict preference.

The second step of the PROMETHEE method is to calculate the multicriteria preference index for each alternative over all
criteria. The preference index is defined as:4

�(a, b) �

k

h�1

WhPh(a, b),

where

k

h�1

Wh � 1

and

 0 � �(a,b) � 1.

This index is the mean of the values of the k preference functions. Wh is a weight associated with each criterion. A weak
preference of a over b is denoted by the value of �(a,b) being close to zero. A strong preference of a over b is denoted by the
value of �(a,b) being close to one.

The third and final step of the PROMETHEE method, determination and evaluation of an outranking relation, requires that
positive and negative outranking flows be determined from the multicriteria indexes. The positive and negative flows are
defined as:�

�
�(a) �

b	A

�(a, b)

and

�
�(a) �

b	A

�(b, a),

where A is the set of possible actions.

Article 7 August 1996 Hewlett-Packard Journal 5

The following rules can then be used to generate a partial preordering of the alternatives. P means “is preferred to,”
I means “is indifferent to,” and iff means “if and only if.”
� aP+b iff �+(a) � �+(b)

� aI+b iff �+(a) �� � �+(b)

� aP–b iff ��(a) �� ��(b)

� aI–b iff ��(a) �� � ��(b).

The outranking relationship is then constructed from these rules:
� a outranks b if aP+b and aP–b or aP+b and aI–b or aI+b and aP–b.

� a is indifferent to b if aI+b and aI–b.

� a and b are incomparable otherwise.

Analytic Hierarchy Process
AHP was developed by Thomas L. Saaty in the 1970s. It is based on a set of axioms developed by Saaty5 and published in a
paper by Harker and Vargas in 1987.6 A good mathematical analysis of these axioms can be found in reference 7. The four
axioms were paraphrased by Harker as follows.

1. Given any two alternatives i and j out of the set of alternatives A, the decision maker is able to provide a
pairwise comparison aij of these alternatives under any criterion c from the set of criteria C on a ratio scale
that is reciprocal, that is,

aji �
1
aij

for all i, j � A.

2. When comparing any two alternatives i, j � A, the decision maker never judges one to be infinitely better than
another under any criterion c, that is, aij � � for all i, j � A.

3. One can formulate the decision problem as a hierarchy.

4. All criteria and alternatives that impact the given decision problem are represented in the hierarchy, that is, all
expectations must be represented (or excluded) in terms of criteria and alternatives in the structure and be
assigned priorities that are compatible with expectations.

Using these axioms, decision applications of AHP can be carried out in two phases: hierarchy design and evaluation.

The first phase, hierarchy design, involves the estimation of weights for each criterion that is used to rank alternatives. Most
decision makers are faced with two types of criteria: quantitative and qualitative. For criteria based on quantitative data
such as cost or size, the weights can be estimated by normalizing or inversely normalizing the comparison factors for each
column of alternatives such that the weights sum to 1:

wij �
aij

�

n

k�1

akj

for all i, j � 1, 2, ..., n.

For criteria based on qualitative data, a relative weight matrix can be constructed using Saaty’s scale of measurement6 (see
Table II).

The positive reciprocal matrix constructed using a verbal scale technique may contain errors in judgment.4 Column
normalization of this type of data would produce different results depending on which column was chosen.

Saaty’s eigenvector method8 is one technique for generating weights that effectively deals with these errors. The
eigenvector method results in final weights that are an average of all possible ways of comparing the alternatives. The
weights from the eigenvector method are calculated by raising the matrix of alternatives A � {aij} to increasing powers of k
and then normalizing the resulting system:4

w � lim
k��

Ake

eTAke
,

where e is a column vector consisting of all 1s and eT is the transpose of e. When w converges, the process is complete and
a consistency index can be calculated that is an indication of the magnitude of the errors in the matrix.

After construction of the hierarchies, the second phase of AHP is evaluating the hierarchies to make a decision. Evaluation
begins with constructing a final hierarchy of the pairwise comparisons of the criteria. Because the criteria are not usually
equally important or quantifiable, Saaty’s scale of measurement and eigenvector approach are well-suited to developing the
weights for ranking the importance of the criteria. The order of preference can then be determined by summing the relative
priorities by weighting them with the overall priority of the given criterion.

Article 7 August 1996 Hewlett-Packard Journal 6

Table II
Saaty’s Scale of Measurement

Value Definition

1 Equally important or preferred

3 Slightly more important or preferred

5 Strongly more important or preferred

7 Very strongly more important or preferred

9 Extremely more important or preferred

2,4,6,8 Intermediate values to reflect compromise

Reciprocals Used to reflect dominance of the second
alternative over the first

Using PASS
The Package Selection System is a Microsoft Windows -based application. It was developed using Microsoft’s Visual BASIC,
version 2.0. Visual BASIC is a programming methodology that allows the developer to create programs that can take
advantage of the Windows graphical user interface (GUI). Visual BASIC applications have the overall “look and feel” of
professional Windows applications including pulldown menus, buttons, check boxes, scroll bars, text boxes, and icons.
Visual BASIC programs can take advantage of other Windows features including multiple-document interface (MDI),
dynamic data exchange (DDE), object linking and embedding (OLE), and dynamic link libraries (DLL).

A typical PASS session is run in the following manner:

1. Select technically feasible alternatives using the expert system, X-PASS.

2. Start the multiple-attribute decision making module by clicking on MADM.

3. Input the number of criteria and alternatives.

4. Select the MADM tool (AHP or PROMETHEE).

5. Input the alternatives. Usually alternatives are selected from those suggested by X-PASS but the user is free to
select other alternatives or define a custom alternative.

6. Input the criteria. Several criteria are suggested by PASS for the purpose of ranking alternatives, but the user
is free to define custom criteria.

7. Input the information required to describe the decision maker’s preferences.

8. Tell PASS to evaluate alternatives by clicking on Eval from the PASS window menu.

Alternatives Criteria Modify Evaluate General Help Quit

Package Selection System
(PASS)

MADM X-PASS

File HelpPROMETHEEAHP

Fig. 4. Hierarchy of the major PASS modules.

Article 7 August 1996 Hewlett-Packard Journal 7

Fig. 5. X-PASS form.

PASS contains 18 separate modules for accomplishing this task. The modules are used for inputting data, selecting criteria
and alternatives, creating custom alternatives, displaying results, and interfacing with other Windows applications. The
hierarchy of the major PASS modules is shown in Fig. 4.

PASS can be started by clicking on the PASS icon or by typing in the proper path and Pass.exe in one of the Windows Run
screens. During startup, a welcome screen is displayed. After a brief pause, a module selection screen is displayed. From this
screen the user can choose an expert system consultation or select multiple-attribute decision making.

Selection of X-PASS causes the expert system module to start. The knowledge base for X-PASS is automatically loaded. The
X-PASS screen is shown in Fig. 5. This form contains four control buttons: Go, Restart, Stop, and Cancel. The X-PASS screen
also contains three response buttons: Why, Unknown, and OK.

Go is used to begin a consultation. Restart continues a consultation that was inadvertently aborted. Stop ends a consultation
but preserves the current knowledge cache. Cancel ends the consultation immediately and clears the knowledge cache.

A user can respond to a question asked by X-PASS with Why, Unknown, or OK. A response of Why causes a message to appear
that explains why the expert system needs that particular piece of information. Selecting Unknown forces the system to pick
an alternative that is the least restrictive in terms of eliminating alternatives. It also associates a low certainty factor with
that choice (a certainty factor is a number between 0 and 1 representing the decision maker’s confidence in an answer given
in response to a question from X-PASS). Selecting OK enters the user’s highlighted response into the knowledge cache.

Also on the X-PASS form, certainty factors can be entered in the box labeled CF, and other knowledge bases can be entered
into X-PASS through the use of the file menu. This powerful feature allows the X-PASS database to be modified by any user.
It also allows X-PASS to be used as an expert system shell for other, nonpackaging-related problems. Feasible alternatives
that are determined by a consultation with X-PASS are saved in an ASCII file for optional use by the MADM modules.

Clicking the MADM button on the module selection form initiates the process for using the multiple-attribute decision
making tools. The first form in the MADM module (Fig. 6) allows the user to input the number of alternatives and criteria.
The AHP or PROMETHEE technique is also selected by using this form. A list box on the form shows the decision maker all
of the standard criteria supported by PASS. The user also has the option to check the box labeled Use X-PASS Alternatives.
Selecting this option enters the feasible alternatives determined by the most recent X-PASS consultation into working
memory. Otherwise, the decision maker can type the number of alternatives and criteria into the text boxes at the righthand
side of the form. A maximum of 20 alternatives and 20 criteria can be used. This limitation is a result of the way in which
Visual BASIC handles large arrays.

The remainder of the MADM forms are activated by using the menu on the main PASS form. Most of the data entry for PASS
is self-explanatory and a help facility is provided to assist in data entry.

Article 7 August 1996 Hewlett-Packard Journal 8

Fig. 6. Initial MADM form.

Entering Criteria for AHP and PROMETHEE
Criteria for AHP and PROMETHEE are entered in different ways. The criteria input modules are activated by selecting Crit
from the main menu. For AHP, two forms are used to enter criteria. The first form (Fig. 7) is for alternatives selection and
contains a combination list box labeled Criteria. As the name implies, it is a list of the standard criteria supported by the
packaging selection system. After all criteria are entered into working memory, a second screen is activated. This screen,
shown in Fig. 8, allows pairwise comparison of the criteria, based on Saaty’s scale of measurement.

Comparisons are made by entering a number from Saaty’s scale in the matrix in the upper lefthand corner. This causes a
row to be compared with a column. The reciprocal comparison is automatically entered into the proper cell. After all
comparisons have been made the weights and consistency index can be displayed by using the Eval button.

A consistency index greater than 0.1 indicates that modifications to the matrix may need to be made. The Reset button clears
the weights and consistency index but leaves the matrix intact. This is useful if only slight modifications to the matrix are
desired. The Clear button clears the matrix as well as the weights and consistency index. Pressing Exit enters all data into
working memory and returns the system to the main menu. Saaty’s scale is shown in a list box at the lower lefthand corner
of the form.

Entering criteria for the PROMETHEE technique is a three-step process. The PROMETHEE form is shown in Fig. 9.

The first step is selecting a criterion from the list box in the criteria section of the form. The criterion is entered into
working memory by pressing OK. A range of values for each of the criteria corresponding to the preselected alternatives is
shown in the range list box.

The second step involves selecting a preference function by pressing one of the six buttons located in the upper lefthand
corner of the form. When a preference function is selected, a graph of the function showing the parameters appears in the
screen to the right of the buttons. For the form shown in Fig. 9, preference function four (P4) has been selected.

The third and final step is to enter the appropriate values for the parameter(s) in the text boxes located in the parameters
section of the form. The listing of the range of data is useful for this step. All data is entered into working memory by
clicking on Record. This process is repeated for all selected criteria.

Fig. 7. Selecting alternatives in AHP.

Article 7 August 1996 Hewlett-Packard Journal 9

Fig. 8. Making pairwise comparisons in AHP.

Fig. 9. Entering criteria in PROMETHEE.

PASS Output
Output from PASS is presented visually and interactively while using the software. ASCII files are also generated; these can
be imported into reports or other applications. The output from X-PASS is a list of technically feasible alternatives. With
each alternative a confidence factor is reported. The confidence factor ranges from 20% to 100% and is based on the number
of questions answered as “unknown.” The output from the MADM modules consists of a ranking of the alternatives and
their associated weights. A sample of the ASCII output from an AHP session is shown in Fig. 10.

Article 7 August 1996 Hewlett-Packard Journal 10

Number of Criteria is 5
Number of Alternatives is 5

CRITERIA MIN/MAX

C1 = Price ($) MIN
C2 = Design (Wks) MIN
C3 = Lead Time (Wks) MIN
C4 = Quality MAX
C5 = Footprint MIN

Pairwise Comparisons

CRITERIA C1 C2 C3 C4 C5

C1 1.000 3.000 9.000 5.000 7.000
C2 0.333 1.000 6.000 2.000 3.000
C3 0.111 0.167 1.000 0.333 0.500
C4 0.200 0.500 3.000 1.000 2.000
C5 0.143 0.333 2.000 0.500 1.000
Consistency Index: 0.0119

Alternatives

A1 = 208-pcpga
A2 = 208-cpga
A3 = 208-cqfp
A4 = 208-mquad
A5 = 196-tab

CRITERIA A1 A2 A3 A4 A5

Price ($) 14.75 18.80 12.20 9.25 7.85
Design (Wks) 8.00 6.00 8.00 12.00 4.00
Lead Time (Wks) 6.00 1.00 1.00 4.00 5.50
Quality 4.00 8.00 2.00 5.00 3.00
Footprint 2.60 2.40 1.30 1.30 1.00

Normalized Alternatives

 Note: Weights are computed from the principal right
eigenvector of the pairwise comparisons matrix.

CRITERIA A1 A2 A3 A4 A5 Weight

Price ($) 0.1546 0.1213 0.1869 0.2466 0.2905 0.5383
Design (Wks) 0.1667 0.2222 0.1667 0.1111 0.3333 0.2228
Lead Time (Wks) 0.0641 0.3848 0.3848 0.0962 0.0700 0.0430
Quality 0.1818 0.3636 0.0909 0.2273 0.1364 0.1222
Footprint 0.1152 0.1248 0.2303 0.2303 0.2994 0.0736

Ranking of the Alternatives

Composite Weight

Alternative 1 : 196-tab 0.2724
Alternative 2 : 208-mquad 0.2064
Alternative 3 : 208-cpga 0.1850
Alternative 4 : 208-cqfp 0.1824
Alternative 5 : 208-pcpga 0.1538

Fig. 10. ASCII output from AHP.

Acknowledgments
The development of PASS would not have been possible without the guidance of Dr. John Labadie, who provided expertise
in multiple-attribute decision making, and Dr. Thomas Siller, who offered advice on expert systems and inference engines.
Both Dr. Siller and Dr. Labadie are professors of civil engineering at Colorado State University.

References
1. A.P. Sage, Decision Support Systems Engineering, John Wiley and Sons, Inc., 1991.
2. J.P. Ignizio, Introduction to Expert Systems. The Development and Implementation of Rule-Based Expert Systems, McGraw-

Hill, 1991.
3. J.P. Brans and P.H. Vinke, “A Preference Ranking Organization Method (The PROMETHEE Method for Multiple Criteria Deci-

sion Making),” Management Science, Vol. 31, 1985, pp. 647-656.
4. J.P. Brans, P.H. Vinke, and B. Mareschal, “PROMETHEE: A New Family of Outranking Methods in Multicriteria Analysis,” in J.P.

Brans, ed., Operations Research ’84, Elsevier Science Publishers, 1984, pp. 477-490.
5. T.L. Saaty, “Axiomatic Foundation of the Analytic Hierarchy Process,” Management Science, Vol. 32, 1986, pp. 841-855.
6. P.T. Harker and L.G. Vargas, “Theory of Ratio Scale Estimation: Saaty’s Analytic Hierarchy Process,” Management Science, Vol.

33, 1987, pp. 1383-1403.
7. R. Saaty, “The Analytic Hierarchy Process—What it Is and How it Is Used,” Mathematical Modeling, Vol. 9, 1987, pp. 161-176.
8. T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, 1980.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

Article 7 August 1996 Hewlett-Packard Journal 11

http://www.hp.com/hpj/aug96/augart8.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Article 8 August 1996 Hewlett-Packard Journal 1

Cycle Time Improvement for Fuji IP2

Pick-and-Place Machines

Some of the major enhancements are eliminating head contention,
reducing or eliminating nozzle changes, supporting user-defined
nozzles, supporting large nozzles for holders 2 and 3, and being
able to define multiple part data for a given part number. The cycle
time improvement exceeds the original goal of 5%, and the result at
one surface mount center was more than 16% over hand-created
and optimized recipes. The solution helps both the high-volume
and the high-mix centers.

by Fereydoon Safai

Reduction of placement cycle time in an assembly line is one of the major goals in a surface mount shop. It is more
important in a high-volume shop than in a high-mix shop because most of the assembly time is spent in part placement. The
reduction of placement cycle time at high-volume centers would have a higher impact than at our high-mix centers.

HP owns many Fuji IP2 machines at our surface mount centers, one on each line. The Fuji IP2 machine is a fine-pitch
pick-and-place machine capable of placing parts from reel, stick, and waffle feeders. It is considered a general-purpose
pick-and-place machine because of its ability to place a wide range of parts. It has two heads, which alternately pick up
parts from the feeders and place them on the panel. Each head has two holders, one with a fixed nozzle and one with an
automatic nozzle. A fixed nozzle must be installed into the fixed holder before the machine starts placing parts. An
automatic nozzle of size S, M, L, or LL can be picked up by the automatic holder from a nozzle station. The nozzle station has
six nozzles: one S nozzle, one M nozzle, two L nozzles, and two LL nozzles. The S and M nozzles are shared between the two
automatic holders of the two heads. Each automatic holder has its own L and LL nozzles; they are not shared between the
two automatic holders.

Since the S and M nozzles are shared between the two automatic holders, it is important that the sequence of placement be
arranged so that the two automatic holders do not require the S or M nozzle at the same time. If they do, depending on the
particular Fuji IP2’s firmware, either one side will halt until the other side finishes its placement and releases the nozzle, or
the IP2 software will crash. In either case, head contention is created, which is a problem for IP2 placement machines.

The Fuji IP2 machine has slot numbers 1 through 37, 51 through 87, and 101 through 110. Slots 101 through 110 are used by
the waffle unit. If the waffle unit is installed, it interferes with the machine and makes slots 1 through 3 inaccessible. Slots 1
to 37 and 51 to 87 can be used for mounting either reel feeders or stick feeders. Slots 101 to 110 are used for waffle feeders.

The IP2 machine has a number of of constraints. Only one of the automatic holders (holder 1) can access waffle parts from
slots 101 to 110. This holder can also access slots 4 to 37 if a waffle unit is installed or slots 1 to 37 if no waffle unit is
installed. The other automatic holder (holder 4) can access slots 51 to 87. One of the fixed holders (holder 2) can access
slots 4 to 37 (not 1 to 37) and the other fixed holder (holder 3) can access slots 51 to 84 (not 51 to 87). The two fixed holders
2 and 3 can pick up parts up to 3.5 mm in height and the two automatic holders can pick up parts up to 10 mm in height.

Waffle Pack
Station
101-110

Station 2 Feeders Station 1 Feeders

Subpanel
1234

Head 1Head 2

Holders

LL L M S L LL

87 51 37 1
Nozzle Station

Fig. 1. Fuji IP2 pick-and-place machine layout.

The Problem
The issues related to the Fuji IP2 are in two categories. One category consists of the issues that reduce the placement cycle
time, such as use of the next device, use of multiple part data, the ability to assign a part to both sides, and the ability to
assign placements to holders based on reference designators. The other category consists of the issues that make the

Article 8 August 1996 Hewlett-Packard Journal 2

machine perform correctly. The main item in this category is head contention. If head contention occurs, for certain IP2
firmware the machine halts and the user must change the sequence of the recipe to run the machine again.

The Methods
In this section, we describe our solution for each issue related to the Fuji IP2 machine. This includes elimination of head
contention, support of the next device mechanism of the IP2, support for user-defined nozzles such as a modified medium
nozzle for holders 2 and 3, use of multiple part data for a part number, and assignment of a part to both sides of the machine
to achieve a better head balance.

Our general solution is as follows: we assign placements to holders to balance the load among the four holders. In the
process, we consider first the placements that have slots already assigned. This is the case when the part numbers are in the
input setups. Then we assign slots to those placements that do not have slots in the input setup. This general solution is
used for both setup and sequence modules. In the sequence module, all the placements have their slots assigned.

In the following sections, we describe many issues which are considered when assigning placements to holders. Our
solutions have been incorporated in setup and sequence generation modules for the Man-Link recipe generation system,
which is used by all HP surface mount centers that have Fuji IP2 machines. Other Man-Link enhancements are discussed in
Article 9.

Eliminating Head Contention. Head contention occurs when holders 1 and 4 need the same nozzle (S or M) at the same time.
At this time, the machine behaves differently depending on what firmware it has. Machines having older versions will stop
and the user must edit the recipe to eliminate the head contention. In newer versions, the holder that needs the S or M
nozzle must wait until the other holder finishes its placements and releases the S or M nozzle.

In our solution, we do not assign parts requiring the S or the M nozzle to both holders 1 and 4. We assign each nozzle only to
one of them, depending on the loads of the holders. This way, the machine in the worst case will place all such parts with
one side. This would not be worse than the case in which one side must wait until the other side finishes.

As an example, assume that there are two parts, each requiring the M nozzle and each having 10 placements. Further
assume that holders 2 and 3 do not have any nozzles attached to them. Assigning both of these parts to one side, say to
holder 1, would not be worse than the case in which one part is assigned to holder 1 and the other part is assigned to
holder 4. Using our solution, Man-Link assigns both parts to one side, say holder 1. In this case, the machine will go back
and forth and place one part at a time for total of 20 round trips. If one part is assigned to holder 1 and the other is assigned
to holder 4, and if the machine has the latest firmware, holder 1 will pick up the M nozzle and go back and forth and make
its 10 placements. While holder 1 is placing parts, holder 4 must wait until holder 1 releases and replaces the M nozzle. At that
time, holder 4 will pick up the M nozzle and go and make its 10 placements. The machine has to do two nozzle changes for
each board, both of which are unnecessary. Our solution does not need any nozzle changes in this particular case, thereby
saving 10 to 15 seconds.

Our solution not only eliminates the head contention, but has the additional benefit of eliminating nozzle changes because of
head contention. In the past, users would not assign to the IP2 parts requiring S or M nozzles because of the head contention
issue. This caused the IP2 to be underutilized. Now users can assign such parts to the IP2 when necessary and this will help
to reduce the overall cycle time of products being built.

Using Slot Link (Next Device). With Fuji IP2 machines it is possible to place multiple feeders containing the same part on the
machine and have the recipe reference one of the slots. When the parts from that slot are depleted, the machine goes
automatically to the next slot that has that part and continues placing.

This slot link mechanism is very helpful for waffle parts. Since the waffle feeders do not take many parts, the operator
frequently has to stop the machine and replenish the parts. If a recipe uses only one fine-pitch part from the waffle unit, all
10 waffle feeders of the IP2 can be filled at once and all of these parts can be used before the machine needs to be stopped
to refill that part.

The mechanism provided by Man-Link is as follows. The user enters, in an input setup, the slots that a particular part is to
occupy and then Man-Link takes over and creates the recipe appropriately. As an example, if a part is assigned to all 10 slots
of the waffle pack unit, we would have a recipe containing the slots and slot links (next devices) shown in Table I.

As shown in Table I, a circular link is created between slots 101 through 110. The next slot for slot 101 is 102, the next slot
for slot 102 is 103, and so on. The last slot, slot 110, is linked to slot 101, the first slot, to create a circular link. The operator
will fill all ten trays with part 1. In the recipe for this part, slot 101 is referenced. The machine starts picking up parts from
slot 101 and places them on the board until all parts are used up. Then the machine will go to the next slot, which is slot 102,
and start placing parts. This will continue until parts from all ten feeders are depleted. Then the machine will stop, the
operator will fill all ten trays, and the cycle will begin again.

http://www.hp.com/hpj/aug96/augart9.htm

Article 8 August 1996 Hewlett-Packard Journal 3

Table I
Slot Link (Next Device) Example

Part Number Slot (Device) Slot Link (Next Device)

Part 1 101 102

Part 1 102 103

Part 1 103 104

Part 1 104 105

Part 1 105 106

Part 1 106 107

Part 1 107 108

Part 1 108 109

Part 1 109 110

Part 1 110 101

User-Defined Nozzles. Holders 2 and 3 take a fixed nozzle. The nozzle sizes that Fuji supplies for these two holders are S and
M. One of our surface mount sites created a larger nozzle for these two holders. This expanded the capability of the machine
so that it can pick up as many as four larger parts, while the original machine can pick up only two larger parts. Although
the nozzles are larger, the Fuji machines require that these nozzles still be called S or M in recipes. Another issue is that
these larger S and M nozzles must be distinguished from the S and M nozzles that holders 1 and 4 can pick up from the
nozzle station. For these reasons, we provide a mechanism that allows the user to define any name for a particular nozzle
and then map it to one of the Fuji-recognized nozzles (S, M, L, LL).

Our mechanism is as follows. The user defines what nozzles are installed in the nozzle station on the machine and what
nozzles are installed in the two fixed holders. The names of the nozzles are user-defined. We have provided six configuration
parameters to name the six nozzles in the nozzle station and two configuration parameters to name the two fixed nozzles, as
shown in Table II.

Table II
Configuration Parameters to Name the IP2 Nozzles

Configuration
Parameter Description Possible User-Defined Nozzle Names

LEFT_LL_NOZZLE The left LL nozzle in the nozzle station LL, ML, XL

LEFT_L_NOZZLE The left L nozzle in the nozzle station L

M_NOZZLE The M nozzle in the nozzle station M

S_NOZZLE The S nozzle in the nozzle station S

RIGHT_L_NOZZLE The right L nozzle in the nozzle station L

RIGHT_LL_NOZZLE The right LL nozzle in the nozzle station LL, ML, XL

HOLDER2_NOZZLE The nozzle in fixed holder number 2 S, M, Modified Medium

HOLDER3_NOZZLE The nozzle in fixed holder number 3 S, M, Modified Medium

In Man-Link, a part number is linked to Fuji part data. In the part data, the user defines a nozzle (like Modified Medium) and
then links this nozzle to a Fuji nozzle, which might be M. We use the user-defined nozzles of each part to assign them to
nozzles of the machine, which are also specified by the user.

In Table III, the actual dimensions of the different nozzles used at different HP surface mount sites are listed.

Multiple Part Data for a Part. From the discussion of the previous section, it is obvious that a part might be picked up
successfully by multiple nozzles. For example, a part might be picked up by both Modified Medium and ML nozzles. Their
nozzle diameters are very close: 6 mm and 7 mm, respectively. For this reason, we have provided part data preferences such
that the user can decide which part data (and in turn which nozzle) is the best for picking up a part, and give it the highest

Article 8 August 1996 Hewlett-Packard Journal 4

preference. The user can then provide additional part data, using other nozzles sizes, for that part with lower preferences.
Our software will try to use the part data with the highest preference, but it will use other part data if it will improve the
balance among the four holders.

Table III
Nozzle Sizes Used at HP Surface Mount Centers

User-Defined
Nozzle Name

Fuji
Nozzle
Name Holders

Nozzle
 Diameter

(mm)

Light Ring
Diameter

(mm)

SS S 1,2,3,4 1.0 21

S S 1,2,3,4 1.3 21

M M 1,2,3,4 2.5 33

Modified
Medium

M 2,3 6.0 33

L L 1,4 4.0 71

ML LL 1,4 7.0 71

LL LL 1,4 10.0 71

XL LL 1,4 15.0 91

A user who has multiple part data defined in the system might still want to use the part data with the highest preference. We
have provided the configuration parameter MULTI_ PART_DATA with values of YES and NO so the user can choose whether all
part data for a part should be considered or just the part data with the highest preference.

Assigning a Part Number to Both Sides of a Machine. Occasionally a product will have a part number that constitutes more than
50% of all the placements for the IP2. We have seen cases in which there is only one part assigned to the IP2. If only one part
is assigned to the machine, one of the heads will be busy placing parts while the other head is idle, doing nothing. For this
reason, Man-Link allows the user to duplicate the part on both sides of the machine and the software will split the reference
designators of that part between the two heads to balance the load.

If a machine is used in a high-volume shop for such cases, multiple feeders of the dominant part can be placed on each side
of the machine to take advantage of the splitting of the reference designators described in this section and the slot link (next
device) feature described earlier.

Assigning Placements to Holders by Reference Designators. Assume that there is only one part assigned to an IP2 for a product
and it is placed on the right side of the machine, where holders 1 and 2 are located. Further assume that the part requires an
S nozzle, and an S nozzle is fixed into holder 2. In this case, it is reasonable that the reference designators of the part be split
between the two holders, 1 and 2. This will speed up the placement cycle time since the right head can pick up two parts
and then go and place both of them. This is what our software will do. It attempts to split the placements among holders
such that the load is balanced among all holders.

Of course, if that part is duplicated on the left side of the machine and an S nozzle is placed into holder 3, then three holders
would be picking up parts and placing. This way both sides of the machine would be used.

Minimizing Nozzle Changes. Reducing nozzle changes is another important task. It was shown earlier that eliminating head
contention also reduced the nozzle changes by two. Each nozzle change takes five to seven seconds. In a high-volume shop,
it is important that the number of nozzle changes be minimized.

Since holders 1 and 4 have their own L and LL nozzles, it is important to assign all parts requiring the L nozzle to one holder
and the parts requiring the LL nozzle to the other holder. The imbalance between such holders determines whether to assign
parts requiring L and LL nozzles to one of these holders. For example, if there are parts requiring the L nozzle and their total
placements are much more than the parts requiring the LL nozzle, then we assign the parts requiring the LL nozzle to one
side and the parts requiring the L nozzle to both sides. In this case, we create one nozzle change on the side containing the
parts with L and LL nozzles. The decision to assign the parts with the L nozzle to both sides of the machine or to a single
side is made so as to minimize the total placements including the nozzle change cost.

Since the nozzle change time is not a constant time, we use a configuration parameter to set the cost of nozzle changes in
terms of placements. The name of the configuration parameter is NOZZLE_CHANGE_COST. It has the default value of 2.5. This
means that each nozzle change takes as long as 2.5 placements.

Article 8 August 1996 Hewlett-Packard Journal 5

Prerotation and Rescan. Fuji part data has two fields called prerotation and rescan. If the prerotation field is set, the part
must be prerotated before the camera can look at it. Therefore, the head that performs such placements can only pick up
one part instead of two, thereby slowing down the machine. We keep track of such parts since they affect the load balance
between the holders.

The effect of the rescan is the same as that of the prerotation. If the rescan field is set for a part, the head that picks up such
parts can only pick up one part and not two. Again, we keep track of such parts and take them into account for load
balancing among the holders.

Slot 34 and 54. Because of the construction of the Fuji IP2 machine, part placements from slots 34 (by holder 1) and 54 (by
holder 4) have the fastest cycle time. Therefore, it is important that the high-count parts are assigned to these two slots. If
the parts are assigned to holders 2 and 3, this does not hold. For holder 2, a part at slot 37 has the fastest cycle time, and for
holder 3, it is slot 51.

Using slots 34 and 54 for high-count parts has the drawback of potentially wasting one to two slots, so if feeder space is at a
premium this mechanism is not appropriate. However, if feeder space is not an issue, the cycle time can be reduced by using
this mechanism. This is especially important for high-volume shops. We have provided a configuration parameter for users
to choose whether to use this feature.

Slot Numbers. The center-to-center distance of the two holders of each head is 63 mm. The pitch of the feeder bank is 21 mm.
The fastest pickup occurs when the parts for two placements made by the two holders of a head are 3 slots away from each
other.

After the assignment of placements to holders is completed, we order the placements of each holder by slot number. In
general, it may help the cycle time to pick up two parts with each head.

X and Y Coordinates of Placements. Another factor that can help reduce the cycle time is the distance between two placements
on the panel. For example, if both holders of a head are picking up two parts, it will be faster if the two placements are close
together on the panel. Therefore, after we sort the placements of each holder by slot (as explained above) then we order
them by their separation on the panel.

Results and Discussion
One HP surface mount center was editing recipes to balance the load among the four holders. An engineer was doing this
task. This was critical because of the high volume of some of the center’s products. When our solution was available, the
center tried it and got a very good result. Our solution was more than 16% faster than the recipe that was hand-optimized by
an engineer. We should note that when this project was funded, the goal was to achieve 5% improvement, but in all cases we
have exceeded this initial goal.

As explained earlier, one of the major issues was head contention. Formerly, the user had to edit the recipe to get around
this problem. As a result, many users were not assigning certain parts to the IP2. This tended to increase the cycle time of
their component placement machines because it increased the load on the fast machines. Since we have eliminated the head
contention issue, users have moved more parts to their IP2 machines and have increased their throughput.

At other centers, the next device mechanism has saved 0.5 hours per shift on each line.

For contract manufacturing, especially for high-volume products, the cycle time reduction can provide an important
competitive advantage. We can create recipes with our tools and give the optimized recipes to contractors to be used on
Fuji machines.

Acknowledgments
The work described in this paper was funded by all HP surface mount centers who have Fuji IP2 machines. All IP2 Man-Link
users have helped us to understand the issues described in this paper. Don Martorello, Sheldon Stewart, Pat Manfull, and Jim
Hudson have helped in defining many issues related to Modified Medium nozzles and head balancing. All members of the
Man-Link team, especially Rick Palm, have contributed to the implementation of this project. Man-Link is one of the products
provided by the design automation group of HP’s product generation information systems department and managed by Eiko
Johnson.

http://www.hp.com/hpj/aug96/augart9.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Article 3 August 1996 Hewlett-Packard Journal 1

Reducing Setup Time for Printed Circuit

Assembly

In 1994, HP’s Man-Link recipe-generation system was enhanced to
reduce the time required for setting up pick-and-place machines.
This was done by ordering the products to exploit the commonality
of parts among them and by creating sequences of setups that
differ as little as possible from one another. This paper documents
the issues and trade-offs and discusses the potential benefits.

by Richard C. Palm, Jr.

Early in 1993, we began an investigation into ways to decrease the cost of setup time for HP surface mount manufacturing
centers. Our initial investigation covered a range of options, including:

� Common setups for both sides of a printed circuit assembly. All of the parts needed for both sides of the printed
circuit assembly are placed in a single setup.

� Partially fixed setups. Commonly used parts are assigned fixed locations on the machines.

� Family setups. All of the parts required to build a group of printed circuit assemblies are placed in a single setup.
The printed circuit assemblies in the group are chosen so that all of the required parts will fit into one setup.

� Feeder bank exchange. Some machines offer the ability to change a large number of parts in the setup quickly by
means of removable feeder banks. The operator can set up the parts for a product in an offline feeder bank while
the machine is building a different product. The operator then trades the offline feeder bank for the online feeder
bank, and can start building the new product immediately.

� Optimization by schedule, described below.

We soon narrowed the investigation to two options. We considered these to offer a good return on investment and to be a
good fit with the architecture of HP’s internal Man-Link system, which creates recipes for pick-and-place machines. The
two options were family setups and optimization by schedule. We asked our customers to estimate the benefit to their sites,
using mathematical models of these options. Based on their inputs, we chose to proceed with optimization by schedule. This
was implemented in 1994.

Setup optimization by schedule takes advantage of the fact that many printed circuit assemblies use common components
(Fig. 1). If the machine setup for each new printed circuit assembly is based on the setup of the previous printed circuit
assembly, parts that are used in both don’t have to be moved, and the total number of parts that need to be set up (called
“feeder changes”) is reduced. For example, in Fig. 1, four parts each are used on three products. Since parts that are
common to multiple products are reused, the operator would only have to do six feeder changes (one each for parts 1 to 6)
rather than the twelve that could be required if parts changed slots between products.

Further reduction in feeder changes can be achieved by changing the order in which printed circuit assemblies are built.
Printed circuit assemblies with a large number of common parts should be built sequentially.

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Part 1 Part 1 Part 6

Part 2

Part 3

Part 4

Part 5

Part 2

Part 4

Part 2

Part 3

Part 5

Setup for Product A Setup for Product B Setup for Product C

Fig. 1. Setup optimization by schedule.

Article 3 August 1996 Hewlett-Packard Journal 2

The advantages of this approach include:

� It works well if feeder space is limited. For example, it has been used effectively in a line containing only one Fuji
CP pick-and-place machine and one Fuji IP pick-and-place machine. In contrast, partially fixed setups and family
setups require a larger amount of excess feeder capacity to be effective.

� It does not require any additional equipment or stock, as is required to use feeder bank exchange.

� It works well for very small lot sizes, even single panels.

Disadvantages include:

� It requires machine downtime to change feeders. The user can prepare feeders for the next product, but cannot
set up offline and use feeder bank exchange or the Fuji CP split-bank mode.

� It has limited effectiveness if the schedule cannot be set by the setup optimization tool. Estimates of the lost effec-
tiveness vary from 10% to 60%.

� Recipe generation must be dynamic, that is, recipes must be generated after identifying the printed circuit assem-
blies to be built in a particular time period.

� Late schedule changes may reduce the tool’s effectiveness, or require that it be rerun.

SOPT
A software tool to optimize schedules by setup, called SOPT (for setup optimization), was created by HP Laboratories and
later adapted to an HP proprietary recipe generation system. This system generates programs, or recipes, for pick-and-place
machines. Any references to SOPT in this paper refer to this system.

The SOPT tool works on a list of printed circuit assemblies. It considers only those parts assigned to a particular machine
for each printed circuit assembly. First, the printed circuit assemblies are ordered using a traveling salesman heuristic with
the number of common parts between printed circuit assemblies as the cost function. Next, a setup is generated for each
printed circuit assembly, and the number of feeder changes is calculated. Finally, the schedule is perturbed, and the feeder
changes are recalculated to determine if a slightly different schedule would be an improvement. When no further
improvements can be found, the program stops. The user can alter the order (for example, if one printed circuit assembly
must be built first). The program will then recalculate the setups.

Outputs of SOPT include setup files for the printed circuit assemblies, and an operator instruction file giving the ordered list
of printed circuit assemblies and the feeder changes required between each pair of printed circuit assemblies.

Man-Link
Man-Link is a newer HP-proprietary tool that generates recipes for pick-and-place machines. The assembly process is
modeled as an ordered list of steps. In each step, a machine or person installs parts on one side of the printed circuit
assembly. To generate recipes for all of the steps in a process, Man-Link executes the following sequence of tasks:

� Assign Reference Designators. Responsibility for the placement of each reference designator is assigned to a step
in the process. In making assignments, Man-Link considers other setups, user-input responsibilities, user step
preferences, the number of parts each machine can handle, balance among steps, and other factors. This task must
be done once for the entire process, to ensure that each placement is assigned to exactly one step.

� Generate Setups. For each step, Man-Link determines where the parts assigned to the step should be loaded on the
pick-and-place machine, considering other setups, machine constraints, placement speed, and other factors. This
task is normally done separately for each step.

� Optimize Sequence. For each step, Man-Link determines the order in which parts should be placed. This task is
always done separately for each step.

Fig. 2 shows these tasks. In Figs. 2, 3, and 4, each shape identifies a part of the problem space that is solved as a unit, either
by a single program invocation or by a series of program invocations sharing data. In Fig. 2, assignment of reference
designators to steps is done by a single program invocation to ensure that each reference designator is assigned to exactly
one step. The other tasks are done by individual program invocations for each step because there is no need to share
information among steps.

These tasks are performed in two phases. The first, called strategic recipe generation, performs an initial subsequence of
these tasks and stores its output in a database. The second phase, called tactical recipe generation, performs the rest of the
tasks, producing the final recipes that are used to build the printed circuit assembly.

It did not seem prudent to integrate the SOPT tool into Man-Link for a number of reasons. These included the SOPT
implementation language (Pascal) and the data structures for setups (SOPT uses files, while Man-Link uses database
tables). We decided to create a Man-Link solution using SOPT ideas and algorithms. In the following sections, some of the
design issues are discussed.

Article 3 August 1996 Hewlett-Packard Journal 3

Process Step 1

Process Step 2

Process Step 3

Assign Reference
Designators

to Steps

Determine
Setups

Optimize
Placement
Sequence

Fig. 2. Man-Link recipe generation model—single product, multiple steps.

Build Lists
To handle multiple printed circuit assemblies in Man-Link, we introduced build lists, which are lists of printed circuit
assemblies. We modified the programs to generate recipes for all of the printed circuit assemblies in a build list. In the
process, Man-Link must order the build list and create setups with minimal feeder changes.

Ordering and Responsibility
An early issue in the design was how to integrate build list ordering into the list of tasks given above. The SOPT
implementation has a single program that orders the list and generates setups for one step (Fig. 3). For each of the other
steps, all of the setups are determined together but the list order determined for the first step cannot be altered. The
advantage of this approach is that the ordering algorithm has detailed knowledge of what parts will or will not fit on a
machine, and can therefore calculate (and optimize) the exact number of feeder changes required. The disadvantages are that
the ordering program must include all of the setup code for the target machine (and therefore be machine-specific), and that
the ordering considers only one step. An order that is very good for one step in the process may be very bad for another.

Process Step 1

Process Step 2

Process Step 3

Assign Reference
Designators to Steps

Determine
Setups

Optimize Placement SequenceOrder Products and
Determine Setups

Product A
Product B

Product C

Fig. 3. SOPT recipe generation model.

For the Man-Link implementation, we wanted to keep our code modular and to consider all steps when ordering. For these
reasons, we decided to separate ordering and setup generation.

As a separate task, build list ordering must precede the generation of setups, since the setups are dependent on the printed
circuit assembly sequence. The next question is whether ordering should precede or follow the assignment of reference
designators. If ordering is done first, then assignment can use that information. On the other hand, if assignment is done
first, ordering can focus accurately on the parts assigned to selected machines.

Perhaps the most compelling consideration was that our users wanted to be able to alter the order after the ordering
program had run, but before the setups had been generated. To do this within the Man-Link architecture, we had only two
options:

� Make ordering the last task in strategic recipe generation. This means that setup generation must be tactical, and
therefore, tactical recipe generation would always have to be run for the entire build list.

� Make ordering a separate phase preceding strategic recipe generation. The strategic phase could then include set-
up generation, and the tactical phase could be run for a single printed circuit assembly on a single step.

Article 3 August 1996 Hewlett-Packard Journal 4

Process Step 1

Process Step 2

Process Step 3

Assign Reference
Designators to Steps

Determine Setups Optimize Placement SequenceOrder Products

Product A
Product B

Product C

Fig. 4. Man-Link recipe generation model—multiple products with setup optimization.

After discussing these issues with our users, we decided to implement the second alternative. Fig. 4 shows that ordering is
done for all products, independent of steps, before any other task. Assignment of reference designators to steps is then done
by a series of program invocations sharing data and using ordering information.

Equipment Sets
Since build list ordering precedes reference designator assignment in Man-Link, the ordering cannot consider the set of
parts assigned to a particular step. We therefore thought we could just order printed circuit assemblies based on all of the
parts on the printed circuit assemblies. The problem with this approach is that the parts on the two sides of a printed circuit
assembly are often quite different. This could lead to poor results for processes consisting of one set of machines for
top-side placement and a second set of machines for bottom-side placement. For this reason, we decided to order top-side
parts separately from bottom-side parts. To do this requires the concept of an equipment set, which is defined as the set of
machines used to place all of the parts on one side of a printed circuit assembly. For example, in Fig. 5, machines 1 and 2
form one equipment set, and 3 and 4 form a second equipment set. The ordering program will consider separately the parts
assigned to each of the two equipment sets.

Product B

Equipment Set 1 Equipment Set 2

Product D

Product C

Product A

Machine 1 Machine 2 Machine 3 Machine 4

Side A

Side A

Side A

Side A

Side A

Side A

Side A Side A

Side B Side B

Side B Side B

Fig. 5. An equipment set is the set of machines used to place all of the parts on one side of a printed circuit assembly.

Schedule Dependence
In the SOPT implementation, any change in schedule normally requires that the SOPT program be rerun. We hoped to
alleviate this in Man-Link by separating setup generation from operator instruction generation. The idea is to keep track of
the parts loaded on a machine. When the operator selects the next printed circuit assembly to be run, Man-Link runs a
machine dependent program that compares the current setup with the setup for the new printed circuit assembly (Fig. 6).
This program lists the minimum number of changes required to get the required parts for the new printed circuit assembly
in the right slots. If the operator follows the determined schedule, changes are minimized. If the operator deviates from the
schedule, there may be more changes, but the setups do not have to be regenerated. This should be particularly effective if
the only change is to insert a prototype into the schedule.

Article 3 August 1996 Hewlett-Packard Journal 5

Calculate
Difference

Calculate
Difference

Calculate
New Setup

Setup
Report 1

Setup
Report 2

Setup
Report 1

Target
Setup

Current
Setup

Setup 1

Setup 2

Setup 3

SOPT Method Man-Link Method

New Setup

Fig. 6. Calculating operator instructions.

The difficulty with this approach is that Man-Link must always know the current setup. We have a means in Man-Link to
ensure this, but it is not robust and has been a source of frustration to our users.

Steps and Machines
A Man-Link process is made up of a sequence of steps, each of which refers to a machine. A particular machine may be used
for more than one step in a process. In this case, Man-Link could do one of two things. First, Man-Link could treat each step
independently, creating a separate sequence of setups for each step. This assumes that the user runs all printed circuit
assemblies through a given step before going on to the next step, which is not realistic. Alternatively,
Man-Link could generate all setups for a given printed circuit assembly before going on to the next printed circuit assembly,
and create a sequence of setups for each machine. We chose to implement the second approach.

One result of this decision is that the setups for each printed circuit assembly must be sequential in the setup list. For
example, in a two-sided surface mount process, the setup for each printed circuit assembly’s bottom side will immediately
precede the setup for its top side, assuming the same machine is used for both sides. (See the next section for a way around
this constraint.)

This is a change from the SOPT implementation, which treats different sides of a printed circuit assembly as separate printed
circuit assemblies. This turns out to be both good and bad—good because the sides can be ordered with other printed
circuit assemblies to require fewer feeder changes, but bad because SOPT may put the sides in the wrong order, requiring
manual shuffling of the schedule.

One related note—Man-Link can be configured to create a single setup for a pair of steps using the same machine. For
example, if a two-sided process uses the same CP3 machine to place both the top and the bottom sides of a printed circuit
assembly, then the user can configure Man-Link to create one CP3 setup containing all the parts required for both sides. In
this case, the sequence of setups for the CP3 would have only one setup for the two-sided printed circuit assembly.

Separating Sides
For certain applications, it may be advantageous to treat the different sides of a printed circuit assembly as separate printed
circuit assemblies. This would allow the top and bottom sides of the printed circuit assembly to be separated in the build
list, or even to be in different build lists. This feature would be useful for processes that use different machines to place the
top and bottom sides.

Man-Link does not support this capability directly, but does provide a way to achieve it. The user must define a dummy
machine that does not cause setups or recipes to be generated. To satisfy the reference designator assignment module, steps
using this machine can take responsibility for parts. The user must then define a top-side process with a dummy step for the
bottom side, and a bottom-side process with a dummy step for the top side. To generate recipes for a double-sided printed
circuit assembly, the user must run recipe generation using both processes. The two printed circuit assembly/process pairs
can be included at different points in a build list, or even in different build lists.

Starting Setups
To get the most out of optimization by schedule, it is best to take advantage of any parts left on the machines from previous
builds. In other words, the last setups for yesterday’s build list should be an input for recipe generation for today’s build list
(Fig. 7). In generating the setups for today’s first printed circuit assembly, we can use any parts left over from yesterday’s
last printed circuit assembly setups.

Article 3 August 1996 Hewlett-Packard Journal 6

Generate
Recipes for
Build List A

Generate
Recipes for
Build List B

Machine 1
Final Setup

Machine 3
Final Setup

Machine 2
Final Setup

Fig. 7. Using starting setups.

Man-Link provides this capability by saving the last setup generated for each machine. This works well as long as setups are
generated by only one person at a time. If two people try to generate setups for the same machines at the same time, they
will overwrite each other’s starting setups, causing all manner of confusion. Man-Link therefore has the constraint that
strategic recipe generation for build lists may not be done for the same machines by more than one user simultaneously.

A suggested way around this constraint is to have a directory for starting setups for each user. This would keep multiple
users from interfering with each other, but does not address the problem of determining the correct starting setup for each
machine, that is, how each machine will be set up before the first printed circuit assembly in the build list is started.

Estimating Benefits
To assist users in projecting the benefits of optimization by schedule, we constructed this model of the setup process:

� Let N � the number of printed circuit assemblies to be built in a schedule.

� Let C � the average number of parts in the printed circuit assemblies.

� Let P � the probability that any given part used by a particular printed circuit assembly is also used by a second
given printed circuit assembly. In other words, P is the average fraction of parts shared by any two printed circuit
assemblies in the schedule. For typical build lists, this varies from around 0.13 to 0.37, with an average of about
0.25.

� Let F � the number of parts the machines can hold. For a CP3, this is around 112, assuming that three times as
many one-slot parts are used as two-slot parts.

� Let U � the total number of unique parts for all of the printed circuit assemblies in the schedule.

� Let X � the total number of feeder changes required by the setups.

The average number of parts that are common to two printed circuit assemblies is CP. The total number of parts in two
printed circuit assemblies is therefore C � (C � CP), or 2C � CP. Assuming that commonality is uniformly distributed, the
average number of parts common to three printed circuit assemblies is CP2, so the total number of parts in three printed
circuit assemblies is C ��(C � CP) � (C � 2CP � CP2). Continuing this reasoning, we arrive at the following estimator of
U:

U � C
P
�1� (1� P)N� .� (1)

This should immediately raise some alarms, because it predicts that the total number of unique parts converges to C/P as
the number of printed circuit assemblies (N) gets large. In fact, this turns out to be a reasonable first-order estimator if the
number of printed circuit assemblies is not too big. If N is between 2 and 5, it is pretty good, but as N approaches 10, it is
consistently low. Fig. 8 shows estimator values and actual values based on a random collection of products from one
surface mount center.

The number of feeder changes required, X, depends on F. If F � C, the parts for a printed circuit assembly will not fit on the
machines, so C must be a lower bound for F. If F � U, all of the parts may be mounted at once, so the number of changes
depends on the commonality with the starting setups. If the starting setups do not contain any parts in the printed circuit
assemblies, then X � U. If the starting setups have all of the parts, X � 0. In the real world, X is generally between these

two extremes, and in fact, �U turns out to be a reasonable estimator. In an analysis of 25 build lists used at surface mount
centers, �U predicted a 61% decrease in feeder changes, compared to an actual decrease of 65%.

Article 3 August 1996 Hewlett-Packard Journal 7

Products

Actual U

Estimator U
^

1211987654321 10

260

240

220

200

180

160

140

120

100

80

60

40

To
ta

l P
ar

ts

Fig. 8. Accuracy of the U estimator based on data from one surface mount center.

Ordering the build list for maximum commonality can raise the effective value of P from an average of 0.26 to an average of
0.28 in the 25 build lists mentioned above.

Setup vs. Cycle Time
Most strategies that reduce setup time do so at the expense of cycle time. In other words, you can save time setting up the
machine if you are willing to live with setups that do not build printed circuit assemblies as quickly. There are several
reasons why this occurs:

� A setup that can be used for multiple printed circuit assemblies is less compact. It requires greater machine move-
ment (either of the part feeder carriage or of the placement heads) to access the parts for each printed circuit
assembly.

� On the Fuji CP machines, a movement of one slot on the part feeder carriage between placements does not slow
the machine down. The Man-Link sequence generators take advantage of this by optimizing placement sequences
for pairs of adjacent parts. Careful selection of parts to put together in the setup can therefore have a big impact
on the cycle time.

� The Fuji CP3 must place all “tall” parts after all “short” parts. An optimized setup will have all of the tall parts at one
end of the part feeder carriage, so each printed circuit assembly can be built with a single pass through the
carriage.

� Fuji IP2 optimization is compromised. When Man-Link generates a setup for a single printed circuit assembly, it
will balance the loads on the two heads. The user can request that a high-use part be loaded on both banks to fur-
ther improve the balance. Also, high-use parts are assigned to slots with the lowest access times.

The combined impact of these effects has been measured to be an increase of cycle time of between 5% and 10%. For small
lot sizes, this is a good trade-off, but for large lot sizes (greater than 100 panels) overall throughput will suffer.

Parallel versus Serial Lines
As noted above, the benefit derivable from this setup strategy is dependent on the amount of excess feeder capacity
available. The immediate temptation is to put machines in series to increase the effective feeder capacity. This could be a
mistake, however, because the utilization of machines in series decreases as a result of the increased overhead of conveying
the panels and reading marks more than once. This cost can be modeled as follows:

� Let V be the overhead per panel. This is the sum of the conveying time, the time to read fiducials, and the time to
read image-reject marks.

� Let S be the average number of seconds required to place a single component. For the CP2 and CP3 machines, a
figure of 0.3 second works well.

� Let M be the number of placements to be done by the CP machines.

For one CP machine, the time required to build a panel is
V � MS seconds. If two CPs in series build the panel, each placing half of the parts, the total time is:

 Total machine time � 2� �V�M
2
� S� � 2V � MS. (2)

Article 3 August 1996 Hewlett-Packard Journal 8

The increase in cycle time caused by having two machines in series rather than in parallel is:

 Change in total machine time � 2V�MS
V�MS

. (3)

Assume that the overhead is 17 seconds. This is enough time for conveying the panel and reading four panel fiducials and
two image-reject marks. For panels with 100 placements, the cycle time is increased by 36% by the serial configuration.
Again, for some shops this will be a reasonable trade-off.

The Bottom Line
To estimate the potential value of this optimization method, the user must:

1. Estimate the reduction in setup time. If the surface mount center is currently performing a complete teardown and setup
for each printed circuit assembly, the number of feeder changes should be reduced from N ��C to approximately
�U from equation 1. If it takes T seconds to change one feeder, the savings is (NC � �U)T.

For example, for five products, with an average of 50 parts per product, and part commonality of 0.20, the expected number
of feeder changes �U will be 168. This means that the reduction in feeder changes will be 250 � 168 � 82. If each feeder
change takes one minute, the total reduction in feeder changes will be 82 minutes, or about 16 minutes per product.

2. Estimate the increase in cycle time. This will be about 10% of the total run time. If machines that are currently running in
parallel need to be put in series to get sufficient feeder space, the user should also estimate the resulting increase in total
machine time, using equation 3 above.

In the above example, if the average number of placements per product is 400, and the average placement time is 0.3
second, the increase in cycle time will be about 400 � 0.3 second�10% � 12 seconds � 0.2 minute/panel.

3. The break-even lot size can then be calculated by setting the decrease in setup time equal to the increase in cycle time. In
the above example:

16 minutes�product

0.2 minute�panel
 � 80 panels/product.

4. Alternatively, the user can calculate the time savings per lot. In the above example, assuming 10 panels per lot:

� Without optimization: 50 minutes setup � 20 minutes build � 70 minutes

� With optimization: 34 minutes setup � 22 minutes build � 56 minutes

� Savings per lot � 14 minutes.

This represents a 20% decrease in the time to build a lot.

We expect an improvement for lines that are dominated by setup time, such as lines for prototypes or high-mix, low-volume
products. If the lot size is consistently less than 100 panels, optimization by schedule may be a good fit.

Conclusion
Life is a series of trade-offs. We believe that the choices we made in this work will provide the best benefit to our customers.
We have received encouraging statistics from the surface mount centers that are using the product. The estimation methods
given above should allow other surface mount centers to evaluate this strategy for their shops.

Acknowledgments
Many thanks to Shailendra Jain for dreaming this up, creating a prototype, and providing crucial input on our efforts.
Thanks to Fereydoon Safai and Ed Katz for their work in the design and implementation of both the SOPT and Man-Link
solutions. And thanks to our customers, who funded the project, and to Eiko Johnson, who managed it.

http://www.hp.com/hpj/aug96/augart10.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Article 10 August 1996 Hewlett-Packard Journal 1

Low-Temperature Solders

The application of low-temperature solders in surface mount
assembly processes for products that do not experience harsh
temperature environments is technically feasible. One single alloy
may not be appropriate as a universal solution.

by Zequn Mei, Helen A. Holder, and Hubert A. Vander Plas

Low-temperature soldering has been a subject of research at HP’s Electronic Assembly Development Center (EADC).
Several benefits may come from developing this technology, including thermal shock reduction, step soldering capability,
and possibly, lead (Pb) elimination.

Thermal Shock Reduction. The risk of thermally induced damages will be reduced if the peak exposure temperature is
reduced. A significant decrease in the peak reflow temperature (the oven temperature at which the solder melts and makes
the connections between the components and the board) will reduce damage to components. Currently, peak reflow
temperatures are around 210°C to 230°C. These temperatures are sufficient to cause phenomena such as popcorning, a
fairly well-known phenomenon in which air and moisture that have been trapped in the plastic package of an IC are heated
to the point where they expand and cause the component case to crack open.

Pb

BiIn

Pb

Sn

Sn

SnBi In Bi

InPb

In2 Bi In Bi

In2 Bi In Bi

E

P

E

E

P

P

P EE

P

E

(a) (b)

(c) (d)

327 C

183 C

200 C

232 C

300 C

250 C

150 C

125 C

150 C

200 C

200 C

125 C

 95 C

139 C
271 C

232 C

139 C

160 C

180 C
200 C

240 C

271 C

200 C

180 C

160 C

140 C

120 C

125 C

140 C

156.7 C

109 C
110 C72 C 90 C

64 C59 C
82 C

77 C

327 C

140 C

120 C

232 C

125 C

140 C

156.7 C 271 C

184 C

110 C72 C 90 C

76 C

150 C

180 C 160 C220 C

183 C

327 C

200 C

200 C

180 C

160 C

118 C

Fig. 1. Melting points of ternary systems of all possible combinations of (a) BiPbSn, (b) BiInSn, (c) PbInSn,

and (d) BiInPb.

e

e

e

e

e

e

e e

e
e

e

e

Article 10 August 1996 Hewlett-Packard Journal 2

The damage from popcorning is immediate and usually detectable, but there are other thermally induced damages that can
cause long-term problems, such as warping of printed circuit boards or damage to ICs, which would also be reduced with
lower peak temperatures.

Step Soldering. The availability of solders with lower melting points will make multiple reflow processes on a single board
possible. For example, all of the normal components that can tolerate higher reflow temperatures could be soldered to a
board using the standard process, and then the lower-temperature components could be added in another reflow process.
Since step soldering is a bulk reflow process, it takes less time and is more uniform than hand soldering, and doesn’t take
any different equipment or special training.

Possible Pb Elimination. Many low-temperature solders contain no lead.

Selection of Low Melting Alloys
We call a solder alloy low melting if it melts at temperatures below 183°C and above 50°C. Most of the alloys that meet this
requirement are made of four elements: Sn (tin), Pb (lead), Bi (bismuth), and In (indium). The Cd (cadmium) bearing alloys
are not considered because of their extreme toxicity. Various compositions of these elements produce alloys that melt at
any given temperature between 50°C and 183°C. Commercially available low-melting alloys are listed in Table I. The
numbers associated with each alloy in Table I are the percentages by weight of the components that make up the alloy.

To better understand the correlation between the alloy compositions and their melting temperatures, we can use the ternary
diagram of melting temperature. A ternary diagram uses a triangle to represent chemical compositions of a three-element
alloy system. A physical property, such as melting temperature, is plotted over the triangle. Figs. 1a to 1d show the melting
points of ternary systems of all possible combinations of the elements BiPbSn, BiInSn, InPbSn, and BiInPb.

These diagrams show what are called the liquidus temperatures, as opposed to the solidus temperatures. A typical alloy
melts not at a single temperature but over a temperature range. The solidus temperature is the highest temperature at which
an alloy remains solid, while the liquidus temperature is the lowest temperature at which an alloy remains liquid. At the
temperatures between the solidus and liquidus temperatures, an alloy is a mixture of solid and liquid. The solidus
temperatures of these alloy systems are not shown in Fig. 1. However, for a few specific compositions labeled “e” or “E” in
Fig. 1, the so-called eutectic alloys, the solidus and liquidus temperatures are equal. Alloys with eutectic compositions or
small differences between their liquidus and solidus temperatures are often favored for soldering applications because they
melt and solidify rapidly instead of over a range of temperatures.

Not all the compositions found on the ternary phase diagram are suitable for soldering applications. To determine which are
most appropriate, see Table 1.

� Wettability. A metal is said to have wetted with a surface if it forms a sound metallurgical bonding with the surface.
Wetting is essential in the soldering process because it ensures that the joint created won’t come apart at the inter-
face. Any new alloy must be able to wet to the common pad surface finishes: Cu, PbSn, and Ni coated with Pd or
Au.

� Reliability. Lower-temperature alloys should still be reliable, so we measure the following properties to estimate
how reliable solder joints made of an alloy will be: shear strength, creep resistance, isothermal fatigue resistance,
and thermal fatigue resistance.

� Long-term stability. Microstructural evolution, grain growth, and recrystallization contribute to changes in the sol-
der joint mechanical properties over time, so we want to make sure that the changes are slow and stable and won’t
reduce the mechanical properties of the solder joints to unacceptable levels over the life of the joint.

� Practicality. Alloys used for mass production should be cheap and widely available. It should be possible to make
them into solder pastes so that they can be used in standard assembly processes, and suitable fluxes should be
available. The alloys shouldn’t be more toxic than what’s currently used.

To begin our alloy selection and evaluation, we found references in the available literature to low-temperature alloys that
might fit these requirements. Three alloys were selected for further evaluation:

� 43Sn43Pb14Bi. The solidus temperature of this alloy is 144°C and the liquidus temperature is 163°C, 20°C lower than
63Sn37Pb, but with similar mechanical properties.

� 58Bi42Sn. This composition is a eutectic alloy that melts at 139°C. It is lead-free and strong, but brittle. Also, its
fatigue resistance is questionable.1,2

� 40Sn40In20Pb. The solidus temperature of this alloy is 121°C and the liquidus temperature is 130°C. It is soft and
ductile. It doesn’t have the problem of embrittlement when soldering to thick gold surfaces, like PbSn, because
of the high In content. Unfortunately, the high In content drives the price of this alloy up because In is extremely
expensive right now.

Article 10 August 1996 Hewlett-Packard Journal 3

Table I
Low-Melting Alloys

Chemical Composition
Liquidus

Temperature
(°C)

Solidus
Temperature

(°C)
Chemical Composition

Liquidus
Temperature

(°C)

Solidus
Temperature

(°C)

49Bi21In18Pb12Sn
51In32.5Bi16.5Sn
49Bi18Pb18In15Sn
66.3In33.7Bi
57Bi26In17Sn
54.02Bi29.68In16.3Sn
51.45Bi31.35Pb15.2Sn2In
52Bi31.7Pb15.3Sn1In
52.5Bi32Pb15.5Sn
52Bi32Pb16Sn
52Bi30Pb18Sn
50Bi31Pb19Sn
50Bi28Pb22Sn
46Bi34Sn20Pb
50Bi25Pb25Sn
56Bi22Pb22Sn
50Bi30Pb20Sn
52.2Bi37.8Pb10Sn
45Bi35Pb20Sn
46Bi34Pb20Sn
54.5Bi39.5Pb6Sn
67Bi33In
51.6Bi41.4Pb7Sn
52.98Bi42.49Pb4.53Sn
52In48Sn
53.75Bi43.1Pb3.15Sn
55Bi44Pb1Sn
55Bi44Pb1In
55.5Bi44.5Pb
50In50Sn
58Bi42Pb
38Pb37Bi25Sn
51.6Bi37.4Sn6In5Pb
40In40Sn20Pb
52Sn48In

58
60
69
72
79
81
93
94
95
95.5
96
99

100
100
115
104
104
105
107
108
108
109
112
117
118
119
120
121
124
125
126
127
129
130
131

58
60
58
72
79
81
87
90
95
95
96
93

100
100

95
95
95
98
96
95

108
109

98
103
118
108
117
120
124
118
124

93
95

121
118

34Pb34Sn32Bi
56.84Bi41.16Sn2Pb
38.41Bi30.77Pb30.77Sn0.05Ag
57.42Bi41.58Sn1Pb
36Bi32Pb31Sn1Ag
55.1Bi39.9Sn5Pb
36.5Bi31.75Pb31.75Sn
43Pb28.5Bi28.5Sn
58Bi42Sn
38.4Pb30.8Bi30.8Sn
33.33Bi33.34Pb33.33Sn
97In3Ag
58Sn42In
80In15Pb5Ag
99.3In0.7Ga
95In5Bi
42Pb37Sn21Bi
99.4In0.6Ga
99.6In0.4Ga
99.5In0.5Ga
100In
54.55Pb45.45Bi
70Sn18Pb12In
48Sn36Pb16Bi
43Pb43Sn14Bi
50Sn40Pb10Bi
51.5Pb27Sn21.5Bi
60Sn40Bi
50Pb27Sn20Bi
70In30Pb
47.47Pb39.93Sn12.6Bi
62.5Sn36.1Pb1.4Ag
60Sn25.5Bi14.5Pb
37.5Pb37.5Sn25In

133
133
135
135
136
136
137
137
138
139
143
143
145
149
150
150
152
152
153
154
156.7
160
162
162
163
167
170
170
173
175
176
179
180
181

96
128

96
135

95
121

95
96

138
96
96

143
118
142
150
125
120
152
153
154
156.7
122
162
140
144
120
131
138
130
165
146
179

96
134

These three were chosen mostly because there was more information available on them than on other low temperature
alloys, not necessarily because we thought they would make the best solders. They provided a starting point.

Because the technical data on the low temperature alloys was limited and inconclusive,3 we conducted a series of tests
based on our selection criteria listed above.

Wetting and Solderability
Two types of tests were conducted to look at the wetting performance of these alloys: spreading tests and wetting balance
tests.

In spread tests, a dollop of solder paste is deposited on a copper board or test coupon. The coupons are then heated to 30°C
above the liquidus temperature of the alloy in an oven under a nitrogen atmosphere. The dollop of solder paste melts, and as
long as the flux is active enough to remove the surface metal oxides, the solder forms a bead, or cap (see Fig. 2). The
diameter and height of the solder cap can then be measured to determine the contact angle (�) of the solder to the board.
This contact angle, or wetting angle, is a measure of how well the solder will wet in a surface mount process—smaller is
better.

�

Fig. 2. Solder bead formed by reflowing paste on a plain Cu surface. α is the wetting angle.

Article 10 August 1996 Hewlett-Packard Journal 4

40

35

30

25

20

15

10

5

0

W
et

tin
g

A
ng

le
s

(d
eg

re
es

)

NC

RMA

WC

NC1 WC

NC
150 to
200 C

NC

RMA

WC

NC1
RMA

NC2

RMA

63Sn 37Pb
150 C to 220 C

43Sn 43Pb 14Bi
150 C to 190 C

58Bi 42Sn
135 C to 170 C

40Sn 40In 20Pb
130 C to 170 C

RMA

Fig. 3. Wetting angles determined from spreading tests of solder pastes on copper, reflowed in a nitrogen oven. The

x axis indicates the solder alloys and reflow temperatures. The fluxes are indicated at the tops of the bars

(WC = water-clean, NC = no-clean, RMA = rosin mildly activated).

NC2

RMA

Factors that affect the spread test include the activity of the flux, the surface tension of the molten alloy, and the alloy’s
ability to make a metallurgical bond with the surface metallization. All of these factors have to be taken into account when
interpreting the results of spread tests.

The results of the wetting angle tests are shown in Fig. 3. The 63Sn37Pb and 43Sn43Pb14Bi alloys both wetted well and
similarly with the same flux. The 58Bi42Sn and 40Sn40In20Pb alloys generally wetted the copper surface (��� 90°), but not
as well as the other two alloys, averaging two to three times the wetting angle with the same fluxes. In fact, the
40Sn40In20Pb alloy didn’t wet at all with one no-clean flux (NC2). These differences may have to do with the fact that
indium and bismuth oxides are more difficult to remove than tin and lead oxides. These alloys also have lower surface
tensions than PbSn.

Another factor in how the lower-temperature alloys performed is that the current water clean and no-clean fluxes were
developed for 63Sn37Pb and activate at about 150°C. They may not be suitable for the low-temperature solders since most
of the low-temperature solders melt at temperatures below 150°C. Wetting balance tests were conducted to find fluxes that
would be appropriate for use at lower temperatures, and the results of those tests are presented in reference 4 and in
Article 11.

Reliability and Long-Term Stability
Before we could suggest that anyone change from PbSn solder to an alternative alloy, we needed to understand the
mechanical properties of the alloy well enough to know what the trade-offs would be. Therefore, the bulk of the tests we did
to evaluate the alloys focused on the areas of shear, creep, isothermal fatigue, and thermal fatigue.

Shear. Solder joints experience shear because of coefficient of thermal expansion mismatches. To look at the behavior of
solder joints of different alloys in shear, we used specimens as shown in Fig. 4. These specimens have nine solder joints of
dimensions 0.050 by 0.080 by 0.010 inch sandwiched between two copper plates. When the ends are pulled in a testing
machine at different temperatures and strain rates, the stress in the solder joints can be measured. Plotting the measured
maximum stress against the strain rates gives us the relative shear strength of the different alloys and allows us to compare
them to PbSn.

Our shear tests were conducted at three temperatures (25°C, 65°C, and 110°C) and at three strain rates (10–2, 10–3, and 10–4

per second). The results of the shear strength tests for the low-temperature solders and several high-temperature solders are
plotted in Fig. 5.

From these plots we can see that at 25°C, under the same strain rates, 58Bi42Sn is the second strongest, inferior only to a
high-temperature Pb-free alloy. 43Sn43Pb14Bi had about the same strength as 63Sn37Pb, while 40Sn40In20Pb is the softest.
As the temperature increased to 110°C, the low-temperature solders became much softer while the high-temperature solders
were still relatively strong.

Creep. If a constant load is applied to a material while it is held at an elevated temperature, it will deform, or flow, over time.
This time dependent deformation is called creep, and is most significant at absolute temperatures greater than about half
the melting point of the material. Since creep is the main deformation mechanism in solders, it’s important to know how
creep resistant a new solder alloy will be.

http://www.hp.com/hpj/aug96/augart11.htm

Article 10 August 1996 Hewlett-Packard Journal 5

Cu Plates

9 Solder Joints
0.050 by 0.080 by 0.007 inch

Fig. 4. Specimen for shear and creep tests.

10–2

10–3

10–4

10–5

St
ra

in
 R

at
e

(m
m

/m
m

/s
)

0.1 1 100

63Sn 37Pb
63Sn 37Pb / 10%In
43Sn 43Pb 14Bi
40Sn 40In 20Pb
58Bi 42Sn
99Sn 1Cu
96.5Sn 3.5Ag
90Sn 7Bi 2Ag 1Cu

Shear Stress (MPa)

10–2

10–3

10–4

10–5

St
ra

in
 R

at
e

(m
m

/m
m

/s
)

0.1 1 10 100

63Sn 37Pb
63Sn 37Pb / 10%In
43Sn 43Pb 14Bi
40Sn 40In 20Pb
58Bi 42Sn
99Sn 1Cu
96.5Sn 3.5Ag
90Sn 7Bi 2Ag 1Cu

Shear Stress (MPa)

10–2

10–3

10–4

St
ra

in
 R

at
e

(m
m

/m
m

/s
)

0.1 1 10 100

63Sn 37Pb
63Sn 37Pb / 10%In
43Sn 43Pb 14Bi
40Sn 40In 20Pb
58Bi 42Sn
99Sn 1Cu
96.5Sn 3.5Ag
90Sn 7Bi 2Ag 1Cu

Shear Stress (MPa)

10
(a)

(b)

(c)

Fig. 5. Results of shear strength tests for the low-temperature solders and several high-temperature solders at (a) room

temperature, (b) 65°C, and (c) 110°C.

Article 10 August 1996 Hewlett-Packard Journal 6

0.1 1 10 100
Shear Stress (MPa)

0.1 1 10 100
Shear Stress (MPa)

0.1 1 10 100
Shear Stress (MPa)

0.1 1 10 100
Shear Stress (MPa)

10–2

10–3

10–4

10–5

10–6

10–7

10–8

St
ra

in
 R

at
e

(m
m

/m
m

/s
)

10–2

10–3

10–4

10–5

10–6

10–7

10–8

St
ra

in
 R

at
e

(m
m

/m
m

/s
)

10–2

10–3

10–4

10–5

10–6

10–7

10–8

St
ra

in
 R

at
e

(m
m

/m
m

/s
)

10–2

10–3

10–4

10–5

10–6

10–7

10–8

St
ra

in
 R

at
e

(m
m

/m
m

/s
)

(a) (b)

(c) (d)

90 C 65 C 20 C

Fig. 6. Steady-state creep (strain) rates at 20°C, 65°C, and 90°C as a function of shear stress for 63Sn37Pb (a) and the

low temperature solders: (b) 58Bi42Sn, (c) 40Sn40In20Pb, and (d) 43Sn43Pb14Bi.

The same kind of specimens used in shear tests were used in the creep tests. The steady-state strain rates as a function of
shear stress at 25°C, 65°C, and 90°C are plotted in Fig. 6. The data has been fitted with standard creep (Dorn) equations:

d�
dt
� A�ne–�H�RT,

where � is the shear strain or creep, A is a materials constant, � is the shear stress, n is an empirical constant typically
between 3 and 7, H is the activation energy, R is the gas constant, and T is the absolute temperature in K. The resulting Dorn
equation parameters are listed in Table II.

Table II
Creep Equation Parameters for Three Solder Alloys

 Alloy A n

�H
(kcal/mole)

40Sn40In20Pb 4.0488�104 2.98 22.00

58Bi42Sn 5.5403�10�7 4.05 16.85

43Sn43Pb14Bi 0.11552 2.94 17.05

The rupture strains of the low-temperature solders were also determined from the creep tests. 58Bi42Sn showed the slowest
creep rate but the least rupture strain for the same stress compared with the other low-temperature solders and the
63Sn37Pb, while 40In40Sn20Pb exhibited the fastest creep rate but the largest rupture strain.

Article 10 August 1996 Hewlett-Packard Journal 7

10,0000.1 1 10 100 1000
Fatigue Life (Cycles)

10

1

0.1

0.01

Cy
cl

ic
 S

tr
ai

n
(T

ot
al

) (
m

m
/m

m
)

Solid: 75 C
Open: 25 C

Triangle: 63Sn 37Pb
Square: 58Bi 42Sn

Fig. 7. Isothermal shear fatigue test results.

Isothermal Fatigue. When materials are subjected to small repeated loading, they can eventually fracture. This process of
gradual fracture is called fatigue. Solder joints experience loading because of coefficient of thermal expansion mismatches.
These loads are cyclic, caused by temperature excursions during operation. Isothermal strain cycles can be used to rapidly
simulate joint exposure to show relative fatigue lives of different solder alloys. There is a relationship called the
Coffin-Manson Law, which is one way of estimating the fatigue life of the material. Fatigue life is defined as the number of
cycles at a given strain that will cause failure in the material.

Coffin-Manson relations for the low-temperature solders have been determined at both 25°C and 75°C. The data for
58Bi42Sn and 63Sn37Pb is shown in Fig. 7. The isothermal fatigue life of 58Bi42Sn is shorter than 63Sn37Pb under the same
cyclic strains.

Thermal Fatigue. Although isothermal fatigue can be used to estimate fatigue life, we also do actual thermal cycling to show
how the joints will perform as the temperature cycles. For our thermal fatigue tests, a new type of test vehicle was designed
(see Fig. 8). Five ceramic plates, all 1/16 inch thick, and 4, 2, 1, 1/2, and 1/4 inch square respectively, were soldered onto a
1/8-inch-thick FR-4 board. Eight solder joints 0.010 inch thick and 0.050 inch in diameter, located in a ring, were sandwiched
between each ceramic plate and the FR-4 board. Each solder joint was individually tested for electrical continuity while
being temperature cycled in a thermal chamber. Two temperature profiles were used, 25°C to 75°C and �20°C to 110°C.

The results of the �20°C-to-110°C test are plotted in Fig. 9. Since the test is still in progress, only the fatigue data for the
failed solder joints is plotted. 63Sn37Pb lasted longer than 58Bi42Sn, and approximately the same number of cycles as
43Sn43Pb14Bi. The 40Sn40In20Pb solder joints have the longest fatigue lives.

Practicality
To examine the practical side of using these alloys, we did a prototype build. Since the 40Sn40In20Pb alloy is so expensive,
it’s an unlikely candidate for large-scale production, so we excluded it from the prototype builds. The 58Bi42Sn alloy is
harder to solder than 43Sn43Pb14Bi (it has a lower melting temperature and its oxide is harder to remove), so we chose to
test the worse case of the two remaining alloys and build with 58Bi42Sn.

The 58Bi42Sn alloy was made into a solder paste with a water-soluble RMA flux.5 This kind of flux was used because, unlike
most standard no-clean fluxes, it is active at the lower oven temperatures used with BiSn. The assembly we chose for this
build had a variety of components, including 0.025-inch-pitch components.

Fig. 8. Test vehicle for thermal fatigue tests.

Article 10 August 1996 Hewlett-Packard Journal 8

Î
Î
Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ

Ï
Ï
Ï
Ï
Ï
Ï
Ï

Î
Î
Î
Î
Î
Î
Î
Î
Î
Î

Î
Î

Fa
tig

ue
 L

ife
 (C

yc
le

s) Ï

4-inch Packages
2-inch Packages
1-inch Packages
0.5-inch Packages
0.25-inch Packages

Joints on:
1400

1200

1000

800

600

400

200

0
63Sn Pb 58Bi Sn 43Sn 43Pb Bi 40Sn 40In Pb

Fig. 9. Results of the �20° C-to-110° C thermal fatigue test. Fatigue lives are shown only for joints that had failed

at the time of writing.

Two types of board platings were used: organic coated copper (OCC) and hot air solder leveling (HASL). These coatings
protect the copper pads from oxidation before the reflow process. For OCC, the copper pads are coated with a thin layer of
a polymer that preserves the solderability of the surface by preventing the oxidation of the copper underneath, but burns off
during the reflow process to allow for metallurgical bonding between the surface and the solder. HASL or HAL (hot air
leveling) accomplishes the same protection but uses a thin layer of PbSn solder that has been blown level with air knives.

The entire assembly process was the same as for 63Sn37Pb, except that a different reflow profile was used. The
low-temperature profile had a preheat period of 4 minutes at 130°C and a peak period of 1.5 minutes at temperatures
between 138°C and 175°C (0 to 39°C above the melting point of the alloy).

Twenty boards were built with no defects. The boards passed functional tests as well as out-of-plane random frequency
vibration (45 minutes at 6g) and board environmental stress testing (BEST—thermal cycling from �45°C to 100°C,
1 hr/cycle, functionality monitored throughout).

Failure of 58Bi42Sn on Pb-Containing Surface
During the thermal cycling of the prototype boards, we observed a thermal fatigue failure mechanism of the BiSn solder on
Pb-containing surfaces.6 Some components on the prototype boards fell off after about 500 cycles of BEST. Boards soldered
with 63Sn37Pb failed after about 900 cycles.

Fig. 10 shows top views of the 58Bi42Sn solder joints before and after BEST. Before BEST, the solder joint surfaces were
smooth. After BEST, the solder joints between OCC boards and the components with Ni-Pd coating remained smooth, but
the solder joints between either the HAL boards or the components with PbSn coating developed very rough surfaces. This
roughness corresponded to the extraordinary grain growth as shown in the cross-sectional views of solder joints in Fig. 11.

The reason for the accelerated grain growth and phase agglomeration was that the Pb from component leads and
HAL coatings on the pads had dissolved into the BiSn joints during the reflow process and formed 52Bi32Pb16Sn, the ternary
eutectic phase of the BiPbSn system (point E in Fig. 1a), which melts at 95°C. Since each cycle of the test took the
temperature to 100°C, that phase became liquid at the grain boundaries and provided channels for fast atom transportation.

Although only a tiny percentage of Pb on the boards or on the component leads dissolved into the BiSn joints, the small
amount of the ternary eutectic ruins the mechanical properties over the course of thermal cycling to 100°C. The joint goes
from having a fine microstructure (as formed) to essentially having large chunks of Sn and Bi held together by some weak
BiPbSn, which indicates that BiSn is only compatible with Pb-free surfaces.

Discussion
With all the data we’ve collected, it’s still difficult to conclude which low-temperature alloy is the best in general. Each has
different advantages and disadvantages. They offer a spectrum of melting ranges: 43Sn43Pb14Bi melts at 144°C to 163°C,
58Bi42Sn melts at 138°C, and 40Sn40In20Pb melts at 121°C to 130°C. Each has certain benefits we might want, such as
40In40Sn20Pb soldering on Au-coated surface without embrittlement, but also has trade-offs, such as BiSn’s intolerance for
Pb on the printed circuit board and component leads or In’s extremely high cost.

Most of the test data obtained so far is positive, with a couple of exceptions. These results seem to indicate that
low-temperature soldering with one or more of the alloys we investigated (or some closely related alloys) is feasible as a
manufacturing technology. The exceptions include (1) the nonwetting of 40In40Sn20Pb with the no-clean flux, and (2)
microstructural coarsening and early failure during the thermal cycling of 58Bi42Sn joints on Pb-containing surfaces. The
first problem is being addressed in a flux development program, working with paste vendors to create fluxes intended for
use in low-temperature applications with the harder-to-solder alloys such as 58Bi42Sn and 40In40Sn20Pb. The solution for
the second problem has not been obtained, although several options are being pursued.

Article 10 August 1996 Hewlett-Packard Journal 9

(a) (b)

(c) (d)

Fig. 10. BiSn joints (a) between a Ni-Pd component lead and an organic coated copper board before thermal cycling

from �45° C to 100° C, (b) between a Ni-Pd component lead and an organic coated copper board after thermal cycling,

(c) between a Ni-Pd component lead and a hot air leveled board after thermal cycling, and (d) between a PbSn-coated

component lead and an organic coated copper board after thermal cycling. (Reprinted from ASME Technical Paper

95-WA/EEP-4. Copyright 1995 ASME. Reproduced with permission.)

(a) (b)

Fig. 11. SEM cross section views of two solder joints at the same magnification after thermal cycling. (a) BiSn joint

between a Ni-Pd component and an organic coated copper board. (b) BiSn joint between between a PbSn-coated

component and a hot air leveled board. (Reprinted from ASME Technical Paper 95-WA/EEP-4. Copyright 1995 ASME.

Reproduced with permission.)

Article 10 August 1996 Hewlett-Packard Journal 10

Conclusion
The application of low-temperature solders in surface mount assembly processes for products that do not experience harsh
temperature environments is technically feasible. Low-temperature assembly appears promising as an addition to the surface
mount landscape as a way of increasing process flexibility and component reliability. However, one single alloy won’t be a
universal solution. Specific component and assembly requirements will have to be considered in choosing or tailoring the
best solder alloy for each application.

Acknowledgments
The authors would like to thank Jerry Gleason for providing direction and guidance for this project in its early, critical
stages. We would also like to thank Judy Glazer, Fay Hua, Jim Baker, Charlie Martin, and Meng Chow for their help and
support.

References
1. J. Seyyedi, “Thermal fatigue of low-temperature solder alloys in insertion mount assembly,” Journal of Electronic Packaging,

Vol. 115, 1993, pp. 305-311.
2. J. Seyyedi, “Thermal fatigue behavior of low melting point solder joints,” Journal of Electronic Packaging, Vol. 115, 1993, pp.

305-311 (sidebar).
3. Z. Mei, H. Vander Plas, J. Gleason, and J. Baker, Proceedings of the Electronic Materials and Processing Symposium, 1994, Los

Angeles, California, pp. 485-495.
4. H.A. Vander Plas, R.B. Cinque, Z. Mei, and J. Baker, “The Assessment of Low-Temperature Fluxes,” HP EAMC Conference Pro-

ceedings, 1995.
5. H. Vander Plas, J. Gleason, Z. Mei, and G. Carter, Results of building BLD Ponderosa formatter boards with 58Bi-42Sn solder

paste, HP internal report, August 1994.
6. Z. Mei, A failure mechanism of 58Bi-42Sn solder joints, HP internal report, September 1994.

Bibliography
1. G. Humpston and D.M. Jacobson, Principles of Soldering and Brazing, ASM International, 1993, p. 63.
2. Choongun Kim and J.W. Morris, Jr., University of California at Berkeley, unpublished work.
3. R. Strauss and S. Smernos, “Low Temperature Soldering,” Circuit World, Vol. 10, no. 3, Spring 1984, pp. 23-25.
4. A. Prince, “A Note on the Bi-In-Pb Ternary Phase Diagram,” Materials Research Bulletin, Vol. 11, 1976, pp. 1105-1108.
5. J.R. Sovinsky, Pb-free alloys program manager, Indium Corporation of America, communication, February 1994.
6. B.R. Allenby, J.P. Ciccarelli, I. Artaki, J.R. Fisher, D. Schoenthaler, T.A. Carroll, D.W. Dahringer, Y. Degani, R.S. Freund, T.E.

Graedel, A.M. Lyons, J.T. Plews, C. Gherman, H. Solomon, C. Melton, G.C. Munie, and N. Socolowski, “An Assessment of the
Use of Lead in Electronic Assembly,” Proceedings of Surface Mount International, August 30 to September 3, 1992, San Jose,
California.

7. Smithells Metals Reference Book, 6th Edition, Butterworths, 1993.
8. Metals Reference and Encyclopedia, The Atlas Publishing Co., Inc., pp. 37-39 and pp. 115-116.

http://www.hp.com/hpj/aug96/augart11.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

Article 11 August 1996 Hewlett-Packard Journal 1

Assessment of Low-Temperature Fluxes

The subject of this paper is the evaluation of the wetting balance
as a technique for studying the flux activity of newly developed
low-temperature solder paste fluxes. The most effective
configuration of the wetting balance was the standard
configuration with only one change: the PbSn eutectic solder was
replaced with a eutectic solder alloy with a melting point of 58°C.
Since 58°C is significantly less than the proposed activation
temperatures of the solder fluxes, wetting curves as a function of
temperature could be studied for each of the fluxes. The resulting
data was used to rank the fluxes in terms of their activation
requirement.

by Hubert A. Vander Plas, Russell B. Cinque, Zequn Mei, and Helen Holder

Solder alloys with melting temperatures between 110°C and 160°C are currently under evaluation within Hewlett-Packard. An
investigation of the mechanical properties of these solders has indicated that a suitable alloy can be found in the ternary or
binary subsets of the BiInPbSn system (see Article 10). However, alloy selection is only the first step in developing a
low-temperature soldering process. A suitable flux must be chosen for use in a solder paste and the alloy-flux interaction
must be studied. Thus, the ability of fluxes to activate at temperatures 20 to 30°C below the melting point of the alloy must
be evaluated. In the case where different solder metallurgies have similar mechanical properties, the optimal metallurgy
for a low-temperature process may be determined by the availability of the appropriate flux chemistry.

For the flux selection phase, there is no standard procedure for testing the activity of a solder flux. The degree of wetting in
a system (solder, substrate, atmosphere, flux) may be characterized with a sessile spread test or by a wetting force
measurement. (The sessile spread test is often simply called a spread test.1) The two tests are complementary. Each of the
tests involves a balancing of surface tensions at a three-phase junction. For an assessment of flux activity, a dynamic
measurement is more appropriate than a static measurement. Thus, the wetting force measurement is preferred to the sessile
spread measurement.

The wetting balance was developed to test the solderability of component leads in a wave solder process. The technique has
been adapted to characterize the solderability of surface mount component leads.2 The focus of this paper is the evaluation
of the wetting balance as a technique for studying the flux activity of newly developed low-temperature solder paste
fluxes. Specifically, the Multicore MUST System II wetting balance was modified to evaluate flux activity at lower
temperatures. Sample preparation and testing procedures were adapted to compare the wetting of various low-temperature
solder alloy/flux combinations.

Review of the Wetting Balance
A wetting balance measures the force produced by the solder meniscus when a solid test specimen is partially immersed into
a molten solder. The force is plotted as a function of time to produce a wetting curve. The measured force, F, is the sum of
two components: a wetting force Fw, and an Archimedes buoyant force Fb.

 F � Fw � Fb
 (1)
 � pγlv cosθ � ρgV.

where p is the sample perimeter, γlv is the liquid-vapor interfacial energy, θ is the liquid contact angle, ρ is the solder density,
g is the gravitational acceleration, and V is the submerged volume of the solid. Fig. 1 shows the relationship between the
solder meniscus and the wetting curve. The buoyant force, shown as a dashed horizontal line in Fig. 1, is determined by the
immersed volume. Since this remains constant throughout the test, the evolution of the wetting curve reflects changes in
wetting force as the solder meniscus rises. The act of immersion (Figs. 1a, 1b) causes the meniscus to curve downward,
producing a negative wetting force. As the meniscus rises (Fig. 1c) and becomes horizontal, the wetting force tends to zero.
If solder wets the specimen, the meniscus will climb above the level of the bath, producing a positive wetting force.
Eventually, the solder meniscus reaches its equilibrium configuration (Fig. 1d) and the wetting curve comes to an
equilibrium value.

http://www.hp.com/hpj/aug96/augart10.htm

Article 11 August 1996 Hewlett-Packard Journal 2

Time

Time

Time

Time

Fo
rc

e
Fo

rc
e

Fo
rc

e
Fo

rc
e

Wetting Force
Buoyant Force (constant)

0

0

0

0

(a)

(b)

(c)

(d)

Fig. 1. Relation between the solder meniscus and the wetting curve.

sv

(b)(a)

� �

� sf�

sl�
lv� lf�

sl�

Fig. 2. The balance of surface energies at the three phase junction. (a) Basic system. (b) More complex system with

flux forming a viscous ring around the solid.

When using wetting force measurements to study flux efficacy, it is essential to understand how fluxes may affect wetting
curves. There are essentially only two points of comparison for wetting curves: the equilibrium wetting force and the rate of
wetting. From equation 1, it can be seen that the wetting force is proportional to the cosine of the solder contact angle θ.
The equilibrium wetting force is, therefore, proportional to the cosine of the equilibrium contact angle θeq. For simple
systems, as shown in Fig. 2a, the equilibrium contact angle is given by Young’s equation:3

 γsv � γsl � γlvcosθeq (2)

where γsv is the solid-vapor interfacial energy, γsl is the solid-liquid interfacial energy, and γlv is the liquid-vapor interfacial
energy. By combining equations 1 and 2, the equilibrium wetting force Fw,eq is determined by the difference in the

Article 11 August 1996 Hewlett-Packard Journal 3

solid-vapor and solid-liquid surface energies:

 Fw,eq � p(γsv � γsl). (3)

Thus, fluxes may improve the wetting force by increasing solid-vapor surface energies or by lowering solid-liquid surface
energies. Notice that the liquid-vapor surface energy does not appear in equation 3.

The system becomes more complex when flux forms a viscous ring around the solid. As shown in Fig. 2b, flux replaces
vapor at the original three-phase junction, altering the surface energies, which determine the wetting force. Furthermore,
the mass of flux and the creation of two additional three-phase junctions may alter the wetting force by distorting the shape
of the solder meniscus. Despite these complications, measurement of the wetting force should still provide useful
information that reflects the efficacy of the flux.

The second point of comparison for wetting curves is the rate of wetting. This can be reasonably defined in a number of
ways. In this paper, the rate of wetting will be taken as the time to reach the buoyant force (θ � 90°). In the standard mode
of operation, the heat for flux activation is supplied when the specimen is immersed into the solder bath. In this case,
progress of wetting may be limited by the rate at which flux reduces the surface oxide of the specimen. The time to wet, t,
normally follows the exponential form expected for an activated process:

 t � t0eQ�kT,

where t0 is a constant, k is Boltzmann’s constant, T is the temperature of the solder bath, and Q is an activation energy. It
follows that higher temperatures and more active fluxes will produce more rapid wetting. The situation is altered when a
furnace preheat is used for flux activation. In this case, oxide reduction and the rate of wetting will depend on the time at
high temperature in the furnace. If the flux works properly the surface oxide will have been reduced before initiation of the
wetting test.

Procedure
The activation requirements of low-temperature fluxes and the effects of flux alloy interaction were investigated using a
Multicore Universal Solderability Tester (MUST II). All tests were conducted in air using a standard copper wire as the test
specimen. Standard samples consisting of 1-mm-diameter copper wire were prepared by etching the as-received wire to
remove all surface oxides. These samples were aged at 100°C for one hour in air to produce a uniform, repeatable oxide
coating on the samples.

Fluxes were applied in one of two ways. First, when the flux was in liquid form, the specimen was dipped into the liquid to
produce an even coat. The liquid fluxes (Actiec 5, Actiec 2, and SM/NA) are standard fluxes provided by Multicore with the
MUST II system. Second, when the flux was part of the solder paste flux vehicle, a uniform weight of flux vehicle
(approximately 4 to 5 mg) was evenly spread on the surface of the Cu wire.

Since the goal was to evaluate each flux as a component of a solder paste, all of the experimental fluxes were obtained as
part of the solder paste flux vehicle, that is, the solder paste without the solder. All of the fluxes—flux 1, flux 2, and flux
3—evaluated in this program were low-temperature flux systems under development. The performance of the
developmental fluxes was compared to a flux vehicle developed for use with eutectic PbSn solder.

The Multicore wetting balance was set up in the three different configurations shown in Fig. 3.

� Standard configuration (Fig. 3a). This is the normal mode of operation for the Multicore MUST II. The copper wire
is dipped into a large volume (6 cm in diameter by 5 cm deep) of molten solder. Two different solder alloys were
used in the large bath: eutectic PbSn, which melts at 183°C, and 49Bi21In18Pb12Sn, a quaternary eutectic alloy
(the numbers are the percentages by weight of the four components of the alloy) that melts at 58°C. Heating the
sample occurs when it is dipped into the molten solder.

Cu Sample

Solder

(a) (b) (c)

Sample Holder

Solder

Furnace

Fig. 3. The three configurations of the wetting balance studied. (a) Standard configuration.

(b) Furnace preheat configuration. (c) Microbath configuration.

Article 11 August 1996 Hewlett-Packard Journal 4

PbSn Eutectic

BiInPbSn Eutectic

Time (s)

Flux = Actiec 5
Solder Temperature = 235 C

1 2 3 4 5 6 7 8 9 10

1.5

1

0.5

0

–0.5

–1

–1.5

Fo
rc

e
(m

N
)

Fig. 4. The effect of solder composition on the equilibrium wetting force.

� Furnace preheat configuration (Fig 3b). A separate heater is attached on top of the solder bath in the standard
configuration. This allows the sample to be heated before immersion into the molten solder. The preheat tempera-
ture can be controlled independently of the solder bath temperature.

� Microbath configuration (Fig. 3c). The volume of molten solder is reduced to 0.6 cm in diameter by 0.5 cm deep.
This configuration minimizes the amount of each solder alloy that is required to do the tests.

When the quaternary eutectic alloy is used in the standard configuration, the bath temperature can be set to investigate the
activation as a function of temperature for the low-temperature fluxes. The furnace preheat technique is a variation of the
standard test that was developed to imitate more closely the thermal cycle of a standard surface mount soldering process.
The furnace, mounted directly above the solder bath, provides control of the specimen temperature independent of the
solder bath temperature. Finally, the microbath was used to investigate the effects of flux-alloy interaction for a variety of
alloys. The microbaths are aluminum containers that were machined to sit atop the MUST II globule heater. The baths,
which hold less than 10 grams of solder, minimize the amount of solder required for testing. The microbath setup yielded
more reproducible results than the standard globule tests provided by Multicore.

Results
Equilibrium Wetting Force. Differences in equilibrium wetting force can be produced either by varying the solder bath
composition or by varying the flux composition. Fig. 4 shows the differences in the equilibrium wetting force produced by
varying the solder composition. In this test, both the PbSn eutectic solder and the BiInPbSn quaternary eutectic solder were
used with the standard configuration and a bath temperature of 235°C. One flux, Actiec 5, is plotted for both alloys and
clearly shows the difference in the equilibrium wetting force.

Fig. 5 shows the differences in the equilibrium wetting force that can be produced by changing the flux composition. Flux 1
and flux 2 are two different experimental low-temperature fluxes. They were both used with the eutectic quaternary alloy
and a bath temperature of 190°C in the microbath configuration. Tests conducted using flux 2 exhibit a consistently greater
equilibrium wetting force.

Rate of Wetting. Differences in the rate of wetting can be produced by varying the flux composition or by varying the bath
temperature. Fig. 6 shows the difference in wetting rate as the hydrochloric acid content (flux composition) is varied from 0
to 5% using the standard liquid fluxes supplied by Multicore. These tests used the standard configuration with PbSn eutectic

102 4 6 8

–1

–0.5

0

–0.5

1

Time (s)

Microbath Configuration
BiInPbSn Eutectic

Solder Temperature = 190 C

Flux 2

Flux 1

Fo
rc

e
(m

N
)

Fig. 5. The effect of flux vehicle composition on the equilibrium wetting force.

Article 11 August 1996 Hewlett-Packard Journal 5

Actiec 2 Actiec 5

SM/NA

1098765432
Time (s)

–1.5

–1

–0.5

0

0.5

1

1.5

Fo
rc

e
(m

N
)

Solder = PbSn Eutectic, 235 C

Fig. 6. The effect of flux activity on wetting times.

1

solder and a bath temperature of 235°C. They illustrate that the wetting balance is capable of detecting a change in wetting
rate as the flux composition is changed.

Differences in the rate of wetting produced by varying the bath temperature are shown in Fig. 7. These tests were
conducted using the standard configuration, the quaternary alloy, and flux 1. The bath temperature was varied from 110°C
to 160°C as indicated. Each curve represents the average of two tests. The wetting behavior improves as the bath
temperature is raised. At 160°C, the equilibrium wetting force reached its maximum value of 0.5 mN.

1098765431

–1.5

–1

–0.5

0

0.5

1

1.5

2

Fo
rc

e
(m

N
)

Solder = BiInPbSn Eutectic

Time (s)

160 C 110 C135 C

Fig. 7. Wetting curves for flux 1 as a function of solder temperature using the quaternary alloy as the solder bath.

The furnace preheat configuration provided a method of changing the flux activation temperature while maintaining a
constant solder bath temperature. For the data presented in Fig. 8, the solder bath temperature was set at a constant value
of 100°C using the quaternary eutectic solder. The activation temperature was changed by varying the power to the heater.
In each case, the sample was submitted to a short (30 s) preheat at the indicated power setting before immersion into the
solder bath. Fig. 9 shows the temperature as a function of time for each power setting. Insertion into the solder bath and the
start of the 30-s preheat are at time � 50 s in Fig. 9. As the power is increased from 0 to 60% (�50°C to �160°C), the rate of
wetting improves and the equilibrium wetting force remains constant. The furnace preheat was intended to replicate the
flux activation time used in a normal reflow furnace. Thus, preheat times of a few minutes were planned. However, longer
preheat times produced a progressive deterioration of the wetting behavior. The low-temperature fluxes were unable to
protect the specimens from reoxidizing during the longer preheats. Preheating in a nitrogen atmosphere was considered.

3 6 9 12 15
Time (s)

–1.5

–1.0

–0.5

0

0.5

1.0

Fo
rc

e
(m

N
)

Flux = Flux 2
Solder = BiInPbSn Eutectic, 100 C

Preheat Duration = 30 s

60%
40%

30%
No Power

Fig. 8. Wetting curve for flux 2 as a function of furnace preheat power settings.

Article 11 August 1996 Hewlett-Packard Journal 6

60%

50%
40%

30%

200

180

160

140

120

100

80

60

40

Te
m

pe
ra

tu
re

 (
 C

)

Time (s)
250200150100500

Fig. 9. Temperature calibration curves for the preheat furnace.

However, this option requires a major modification of the equipment that was outside the scope of this project. As a result,
the objective of using the preheat configuration to assess flux activation requirements was not accomplished.

Analysis
Equilibrium Wetting Force. Figs. 4 and 5 indicate that the wetting force measurement is able to distinguish the effects of
varying the solder alloy and the flux composition on the equilibrium wetting force. From equation 3, the wetting force is
reduced by the difference (γsv � γsl). For the test shown in Fig. 4, the solid, vapor, and flux are constant. As a result, γsv
should remain constant and the differences in the equilibrium wetting force are produced by variations in γsl. In Fig. 5, the
solid, liquid, and vapor remain constant and the flux is varied. The equilibrium wetting forces produced by flux 2 are
consistently greater than those produced by flux 1. This difference is difficult to associate with either γsv or γsl. The
equilibrium wetting force is a function of both the solid-liquid and the solid-vapor interface. Both of these interfaces may
depend on the presence of the flux. The solid-vapor interface will be influenced by the presence of the flux. In addition,
different fluxes will remove surface oxides from the solid with different efficiencies. Thus, the observed differences in
equilibrium wetting forces are difficult to associate with either interface.

Rate of Wetting. Figs. 6 and 7 indicate that the rate of wetting, defined here as inversely proportional to the time to cross the
Fw � 0 axis, is a function of both the flux composition and the activation temperature. In Fig. 6, the solid, liquid, and vapor
remain constant and the flux is variable. The rate of wetting increases as the acid content of the flux increases. The rate of
wetting is dependent on the degree of oxide removal, which is a function of acid concentration and temperature. In Fig. 7,
only the temperature was varied. The rate of wetting increases with increasing temperature and the equilibrium wetting
force reaches its maximum at 160°C. This indicates that the flux has effectively removed surface oxides within the first
three to four seconds at this temperature.

Ranking of Low-Temperature Fluxes
The four plots in Fig. 10 compare the wetting behavior of the three developmental fluxes—flux 1, flux 2, and flux 3—to the
control flux formulated for use with eutectic PbSn solder. In each test, the standard configuration was used with the
quaternary eutectic alloy. The bath temperature was varied from 110 to 160°C. As expected, the control flux shows no
wetting until the bath temperature is 160°C. Flux 3 performs similarly to the control flux and would not be a candidate for
use with low-temperature solders. Flux 1 is the most promising of the three developmental flux vehicles. Its wetting times at
110°C are equivalent to the wetting times of flux 2 at 160°C. In addition, the equilibrium wetting force of 0.5 mN is greater
than the equilibrium wetting force of flux 2. In summary, the ranking of fluxes in terms of activation requirements is (flux 1
� flux 2 � flux 3 and the control flux).

Conclusions
The wetting balance as a method to discriminate the wetting behaviors of various solder alloys and fluxes has been
generally successful. Replacing the standard eutectic PbSn solder with a low-temperature solder alloy in the standard
configuration was the most effective method for evaluating the low-temperature fluxes. Operating in the standard
configuration with a low-melting-point quaternary eutectic alloy, the wetting balance was able to rank the fluxes in terms of
activation requirement (flux 1 � flux 2 � flux 3 and the control flux). The results illustrate the usefulness of wetting force
measurements in the characterization of low-temperature fluxes.

Article 11 August 1996 Hewlett-Packard Journal 7

–1.5–1.5

–1.5 –1.5

–1.0

–0.5

0

0.5

1.5

1.0

1.5

1.5

1.5

1.0

1.01.0

0.5 0.5

0.5

0 0

0

–0.5

–1.0–1.0

–1.0
–0.5

–0.5

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Flux 1

Flux 2

Flux 3

Eutectic PbSn Control Flux

Time (s)

Time (s)

Time (s)

Time (s)

160 C 135 C 110 C
160 C 135 C 110 C

160 C 135 C 110 C

Fo
rc

e
(m

N
)

Fo
rc

e
(m

N
)

Fo
rc

e
(m

N
)

Fo
rc

e
(m

N
)

160 C 135 C 110 C

Fig. 10. Wetting curves comparing the wetting behavior of flux vehicles. The BiInPbSn eutectic solder was used for

each test. The label for each curve is the solder bath temperature.

Acknowledgments
Glenn Carter of the HP Boise Printer Division assisted during the project planning and provided the aluminum containers
used in the microbath configuration. Dr. N.-C. Lee of Indium Corporation suggested the use of the low-temperature solder in
the wetting balance.

References
1. F.G. Yost, F.M. Hosking, D.R. Frear, editors, The Mechanics of Solder Alloy Wetting and Spreading, Van Nostrand Reinhold,

1993, pp. 215-216.
2. Ibid, pp. 16-17.
3. Ibid, p. 146.

http://www.hp.com/hpj/aug96/augart11.htm
http://www.hp.com/hpj/aug96/tc-08-96.htm
http://www.hp.com/hpj/journal.html

	cover_0896.jpg
	toc-08-96.htm
	Local Disk
	HP Journal - Table of Contents - August 1996 Volume 47 Issue 4

	aug96a1.pdf
	aug96a2.pdf
	aug96a3.pdf
	aug96a3a.pdf
	aug96a3b.pdf
	aug96a4.pdf
	aug96a4a.pdf
	aug96a5.pdf
	aug96a5a.pdf
	aug96a5b.pdf
	aug96a6.pdf
	aug96a7.pdf
	aug96a8.pdf
	aug96a9.pdf
	aug96a10.pdf
	aug96a11.pdf

